{"title":"The use of innovative tools in the medium voltage grid development, a case study of series voltage regulator","authors":"B. Tőzsér, I. Táczi, A. Torok","doi":"10.24084/repqj21.409","DOIUrl":null,"url":null,"abstract":"The rapid technological improvements concerning the renewable energy sources and the energy policy of the European Union, and the National Energy Strategy are leading to a rapid increase in the number of intermittent renewable power plants. Thus, new challenges emerge in the operation of the distribution system. To operate the system efficiently, the use of innovative technologies must be considered, because conventional network development strategies cannot always provide an optimal solution for the problem. This paper analyses the effects of largescale wind power generation on a medium voltage system and a solution of the problems faced through a case study of a serial voltage regulator. The difference between the profiles of generation and loads causes the residential transformers at the end of the line to encounter large, more than 8% voltage fluctuation. To assess the site’s voltage profile, time series symmetrical load flow calculations were performed. After the thorough analysis of the circumstances a serial voltage regulator device was implemented at 3 different nodes of the system and a placement analysis was carried out with statistical tools. The results showed a 3% decrease in the voltage fluctuation at the end of the line even when the device was far from these nodes; and with an optimal placement, the device could halve the largest voltage fluctuation on the line.","PeriodicalId":21076,"journal":{"name":"Renewable Energy and Power Quality Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy and Power Quality Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24084/repqj21.409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid technological improvements concerning the renewable energy sources and the energy policy of the European Union, and the National Energy Strategy are leading to a rapid increase in the number of intermittent renewable power plants. Thus, new challenges emerge in the operation of the distribution system. To operate the system efficiently, the use of innovative technologies must be considered, because conventional network development strategies cannot always provide an optimal solution for the problem. This paper analyses the effects of largescale wind power generation on a medium voltage system and a solution of the problems faced through a case study of a serial voltage regulator. The difference between the profiles of generation and loads causes the residential transformers at the end of the line to encounter large, more than 8% voltage fluctuation. To assess the site’s voltage profile, time series symmetrical load flow calculations were performed. After the thorough analysis of the circumstances a serial voltage regulator device was implemented at 3 different nodes of the system and a placement analysis was carried out with statistical tools. The results showed a 3% decrease in the voltage fluctuation at the end of the line even when the device was far from these nodes; and with an optimal placement, the device could halve the largest voltage fluctuation on the line.