{"title":"EmoShapelets: Capturing local dynamics of audio-visual affective speech","authors":"Y. Shangguan, E. Provost","doi":"10.1109/ACII.2015.7344576","DOIUrl":null,"url":null,"abstract":"Automatic recognition of emotion in speech is an active area of research. One of the important open challenges relates to how the emotional characteristics of speech change in time. Past research has demonstrated the importance of capturing global dynamics (across an entire utterance) and local dynamics (within segments of an utterance). In this paper, we propose a novel concept, EmoShapelets, to capture the local dynamics in speech. EmoShapelets capture changes in emotion that occur within utterances. We propose a framework to generate, update, and select EmoShapelets. We also demonstrate the discriminative power of EmoShapelets by using them with various classifiers to achieve comparable results with the state-of-the-art systems on the IEMOCAP dataset. EmoShapelets can serve as basic units of emotion expression and provide additional evidence supporting the existence of local patterns of emotion underlying human communication.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"32 1","pages":"229-235"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Automatic recognition of emotion in speech is an active area of research. One of the important open challenges relates to how the emotional characteristics of speech change in time. Past research has demonstrated the importance of capturing global dynamics (across an entire utterance) and local dynamics (within segments of an utterance). In this paper, we propose a novel concept, EmoShapelets, to capture the local dynamics in speech. EmoShapelets capture changes in emotion that occur within utterances. We propose a framework to generate, update, and select EmoShapelets. We also demonstrate the discriminative power of EmoShapelets by using them with various classifiers to achieve comparable results with the state-of-the-art systems on the IEMOCAP dataset. EmoShapelets can serve as basic units of emotion expression and provide additional evidence supporting the existence of local patterns of emotion underlying human communication.