Bosonic Pfaffian state in the Hofstadter-Bose-Hubbard model

F. A. Palm, M. Buser, J. Léonard, M. Aidelsburger, U. Schollwöck, F. Grusdt
{"title":"Bosonic Pfaffian state in the Hofstadter-Bose-Hubbard model","authors":"F. A. Palm, M. Buser, J. Léonard, M. Aidelsburger, U. Schollwöck, F. Grusdt","doi":"10.1103/PHYSREVB.103.L161101","DOIUrl":null,"url":null,"abstract":"Topological states of matter, such as fractional quantum Hall states, are an active field of research due to their exotic excitations. In particular, ultracold atoms in optical lattices provide a highly controllable and adaptable platform to study such new types of quantum matter. However, the effect of a coarse lattice on the topological states often remains poorly understood. Here we use the density-matrix renormalization-group (DMRG) method to study the Hofstadter-Bose-Hubbard model at filling factor $\\nu = 1$ and find strong indications that at $\\alpha=1/6$ magnetic flux quanta per plaquette the ground state is a lattice analog of the continuum Pfaffian. We study the on-site correlations of the ground state, which indicate its paired nature at $\\nu = 1$, and find an incompressible state characterized by a charge gap in the bulk. We argue that the emergence of a charge density wave on thin cylinders and the behavior of the two- and three-particle correlation functions at short distances provide evidence for the state being closely related to the continuum Pfaffian. The signatures discussed in this letter are accessible in cold atom experiments and the Pfaffian-like state seems readily realizable in few-body systems using adiabatic preparation schemes.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.L161101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Topological states of matter, such as fractional quantum Hall states, are an active field of research due to their exotic excitations. In particular, ultracold atoms in optical lattices provide a highly controllable and adaptable platform to study such new types of quantum matter. However, the effect of a coarse lattice on the topological states often remains poorly understood. Here we use the density-matrix renormalization-group (DMRG) method to study the Hofstadter-Bose-Hubbard model at filling factor $\nu = 1$ and find strong indications that at $\alpha=1/6$ magnetic flux quanta per plaquette the ground state is a lattice analog of the continuum Pfaffian. We study the on-site correlations of the ground state, which indicate its paired nature at $\nu = 1$, and find an incompressible state characterized by a charge gap in the bulk. We argue that the emergence of a charge density wave on thin cylinders and the behavior of the two- and three-particle correlation functions at short distances provide evidence for the state being closely related to the continuum Pfaffian. The signatures discussed in this letter are accessible in cold atom experiments and the Pfaffian-like state seems readily realizable in few-body systems using adiabatic preparation schemes.
Hofstadter-Bose-Hubbard模型中的玻色子法夫态
物质的拓扑态,如分数量子霍尔态,由于其奇异的激发而成为一个活跃的研究领域。特别是光学晶格中的超冷原子为研究这类新型量子物质提供了一个高度可控和适应性强的平台。然而,粗糙晶格对拓扑态的影响仍然知之甚少。在这里,我们使用密度-矩阵重整化群(DMRG)方法来研究填充因子$\nu = 1$处的Hofstadter-Bose-Hubbard模型,并发现强有力的迹象表明,在$\alpha=1/6$处,每个斑块的磁通量量子基态是连续体Pfaffian的晶格模拟。我们研究了基态的现场相关性,这表明了它在$\nu = 1$处的成对性质,并发现了一个以体中电荷间隙为特征的不可压缩状态。我们认为,薄圆柱体上电荷密度波的出现以及两粒子和三粒子在短距离上的相关函数的行为,为这种状态与连续体Pfaffian密切相关提供了证据。在这封信中讨论的签名可以在冷原子实验中获得,并且在使用绝热制备方案的少体系统中似乎很容易实现类普法芬状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信