Interpolative fusions

IF 0.9 1区 数学 Q1 LOGIC
Alex Kruckman, Chieu-Minh Tran, Erik Walsberg
{"title":"Interpolative fusions","authors":"Alex Kruckman, Chieu-Minh Tran, Erik Walsberg","doi":"10.1142/S0219061321500100","DOIUrl":null,"url":null,"abstract":"We define the interpolative fusion [Formula: see text] of a family [Formula: see text] of first-order theories over a common reduct [Formula: see text], a notion that generalizes many examples of random or generic structures in the model-theoretic literature. When each [Formula: see text] is model-complete, [Formula: see text] coincides with the model companion of [Formula: see text]. By obtaining sufficient conditions for the existence of [Formula: see text], we develop new tools to show that theories of interest have model companions.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"99 1","pages":"2150010:1-2150010:38"},"PeriodicalIF":0.9000,"publicationDate":"2018-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219061321500100","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 9

Abstract

We define the interpolative fusion [Formula: see text] of a family [Formula: see text] of first-order theories over a common reduct [Formula: see text], a notion that generalizes many examples of random or generic structures in the model-theoretic literature. When each [Formula: see text] is model-complete, [Formula: see text] coincides with the model companion of [Formula: see text]. By obtaining sufficient conditions for the existence of [Formula: see text], we develop new tools to show that theories of interest have model companions.
添入的融合
我们定义了一阶理论在一个公共约简上的一族[公式:见文本]的内插融合[公式:见文本],这个概念概括了模型理论文献中许多随机或一般结构的例子。当每个[公式:见文]模型完备时,[公式:见文]与[公式:见文]的模型伴侣重合。通过获得[公式:见文本]存在的充分条件,我们开发了新的工具来证明感兴趣的理论有模型同伴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信