Chi Wang, Marina Danilevsky, Nihit Desai, Yinan Zhang, Phuong Nguyen, T. Taula, Jiawei Han
{"title":"A phrase mining framework for recursive construction of a topical hierarchy","authors":"Chi Wang, Marina Danilevsky, Nihit Desai, Yinan Zhang, Phuong Nguyen, T. Taula, Jiawei Han","doi":"10.1145/2487575.2487631","DOIUrl":null,"url":null,"abstract":"A high quality hierarchical organization of the concepts in a dataset at different levels of granularity has many valuable applications such as search, summarization, and content browsing. In this paper we propose an algorithm for recursively constructing a hierarchy of topics from a collection of content-representative documents. We characterize each topic in the hierarchy by an integrated ranked list of mixed-length phrases. Our mining framework is based on a phrase-centric view for clustering, extracting, and ranking topical phrases. Experiments with datasets from three different domains illustrate our ability to generate hierarchies of high quality topics represented by meaningful phrases.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91
Abstract
A high quality hierarchical organization of the concepts in a dataset at different levels of granularity has many valuable applications such as search, summarization, and content browsing. In this paper we propose an algorithm for recursively constructing a hierarchy of topics from a collection of content-representative documents. We characterize each topic in the hierarchy by an integrated ranked list of mixed-length phrases. Our mining framework is based on a phrase-centric view for clustering, extracting, and ranking topical phrases. Experiments with datasets from three different domains illustrate our ability to generate hierarchies of high quality topics represented by meaningful phrases.