Robust segmentation of corneal fibers from noisy images

Jia Chen, J. Jester, M. Gopi
{"title":"Robust segmentation of corneal fibers from noisy images","authors":"Jia Chen, J. Jester, M. Gopi","doi":"10.1145/3009977.3010051","DOIUrl":null,"url":null,"abstract":"Corneal collagen structure, which plays an important role in determining visual acuity, has drawn a lot of research attention to exploring its geometric properties. Advancement of nonlinear optical (NLO) imaging provides a potential way for capturing fiber-level structure of cornea, however, the artifacts introduced by the NLO imaging process make image segmentation on such images a bottleneck for further analysis. Especially, the existing methods fail to preserve the branching points which are important for mechanical analysis. In this paper, we propose a hybrid image segmentation method, which integrates seeded region growing and iterative voting. Results show that our algorithm outperforms state-of-the-art techniques in segmenting fibers from background while preserving branching points. Finally, we show that, based on the segmentation result, branching points and the width of fibers can be determined more accurately than the other methods, which is critical for mechanical analysis on corneal structure.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"128 1","pages":"58:1-58:8"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Corneal collagen structure, which plays an important role in determining visual acuity, has drawn a lot of research attention to exploring its geometric properties. Advancement of nonlinear optical (NLO) imaging provides a potential way for capturing fiber-level structure of cornea, however, the artifacts introduced by the NLO imaging process make image segmentation on such images a bottleneck for further analysis. Especially, the existing methods fail to preserve the branching points which are important for mechanical analysis. In this paper, we propose a hybrid image segmentation method, which integrates seeded region growing and iterative voting. Results show that our algorithm outperforms state-of-the-art techniques in segmenting fibers from background while preserving branching points. Finally, we show that, based on the segmentation result, branching points and the width of fibers can be determined more accurately than the other methods, which is critical for mechanical analysis on corneal structure.
噪声图像中角膜纤维的鲁棒分割
角膜胶原蛋白结构在决定视力中起着重要的作用,其几何性质的探索引起了人们的广泛关注。非线性光学成像(NLO)的发展为捕捉角膜的纤维级结构提供了一种潜在的方法,然而,NLO成像过程中引入的伪影使得对此类图像的图像分割成为进一步分析的瓶颈。特别是,现有的方法不能保留对力学分析至关重要的分支点。本文提出了一种结合种子区域生长和迭代投票的混合图像分割方法。结果表明,在保留分支点的同时,我们的算法在从背景中分割纤维方面优于最先进的技术。最后,我们证明基于分割结果可以比其他方法更准确地确定分支点和纤维宽度,这对于角膜结构的力学分析至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信