Numerical modeling of a high power triode-based self-excited oscillator: a path forward more efficient designs and a better frequency stability of low cost high power RF sources

IF 0.9 4区 工程技术 Q4 ENGINEERING, CHEMICAL
Victor Guillot
{"title":"Numerical modeling of a high power triode-based self-excited oscillator: a path forward more efficient designs and a better frequency stability of low cost high power RF sources","authors":"Victor Guillot","doi":"10.1080/08327823.2021.1916678","DOIUrl":null,"url":null,"abstract":"Abstract Triode-based circuits are still the less expensive and more reliable high power sources for industrial applications between 13.56 and 40.68 Mhz. Among them, self-excited oscillators feature the lower cost but with a frequency stability preventing them to address all ISM frequencies and applications. This article demonstrates the possibility to model numerically self-excited oscillators with power triodes using a class-C practical circuit. Advantages over existing analytical calculations and graphical derivations are shown. A method is proposed to evaluate the frequency stability in presence of internal imperfections and external perturbations. These tools offer the possibility to design and analyze more efficiently this family of oscillators especially for demanding applications regarding frequency stability.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"2 1","pages":"153 - 171"},"PeriodicalIF":0.9000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwave Power and Electromagnetic Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/08327823.2021.1916678","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Triode-based circuits are still the less expensive and more reliable high power sources for industrial applications between 13.56 and 40.68 Mhz. Among them, self-excited oscillators feature the lower cost but with a frequency stability preventing them to address all ISM frequencies and applications. This article demonstrates the possibility to model numerically self-excited oscillators with power triodes using a class-C practical circuit. Advantages over existing analytical calculations and graphical derivations are shown. A method is proposed to evaluate the frequency stability in presence of internal imperfections and external perturbations. These tools offer the possibility to design and analyze more efficiently this family of oscillators especially for demanding applications regarding frequency stability.
高功率三极管自激振荡器的数值模拟:低成本高功率射频源的更高效设计和更好的频率稳定性
在13.56 ~ 40.68 Mhz之间的工业应用中,基于三极管的电路仍然是更便宜、更可靠的高功率电源。其中,自激振荡器的成本较低,但其频率稳定性使其无法满足所有ISM频率和应用。本文演示了用c类实用电路模拟功率三极管自激振荡器的可能性。与现有的解析计算和图解推导相比,它具有许多优点。提出了一种评估存在内部缺陷和外部扰动时频率稳定性的方法。这些工具提供了更有效地设计和分析该系列振荡器的可能性,特别是对于频率稳定性要求苛刻的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Microwave Power and Electromagnetic Energy
Journal of Microwave Power and Electromagnetic Energy ENGINEERING, CHEMICAL-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
2.50
自引率
6.70%
发文量
21
期刊介绍: The Journal of the Microwave Power Energy (JMPEE) is a quarterly publication of the International Microwave Power Institute (IMPI), aimed to be one of the primary sources of the most reliable information in the arts and sciences of microwave and RF technology. JMPEE provides space to engineers and researchers for presenting papers about non-communication applications of microwave and RF, mostly industrial, scientific, medical and instrumentation. Topics include, but are not limited to: applications in materials science and nanotechnology, characterization of biological tissues, food industry applications, green chemistry, health and therapeutic applications, microwave chemistry, microwave processing of materials, soil remediation, and waste processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信