F. Giubileo, E. Faella, A. Pelella, A. Grillo, M. Passacantando, A. Di Bartolomeo
{"title":"2D transition metal dichalcogenides nanosheets as gate modulated cold electron emitters","authors":"F. Giubileo, E. Faella, A. Pelella, A. Grillo, M. Passacantando, A. Di Bartolomeo","doi":"10.1109/NANO51122.2021.9514271","DOIUrl":null,"url":null,"abstract":"We report a detailed investigation of the field emission properties of transition metal dichalcogenides, namely MoS2 and WSe2, taking advantage of an experimental setup realized inside a scanning electron microscope equipped with nano-manipulated probe-tips, used for positioning a tip-shaped anode at a nanometric distance from the emitting surface. For n-type WSe2 monolayer on Si/SiO2 substrate, we show that electrons can be extracted also from the flat part of the flake with a current intensity up to few nanoamperes. More interestingly, we demonstrate that the field emission current can be modulated by the back-gate voltage that controls the n-type doping of the WSe2 monolayer. Similarly, we demonstrate that monolayer MoS2 flakes are suitable for gate-controlled field emission devices, opening the way to the development of new field emission transistors based on ultrathin materials.","PeriodicalId":6791,"journal":{"name":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","volume":"46 1","pages":"189-192"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO51122.2021.9514271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We report a detailed investigation of the field emission properties of transition metal dichalcogenides, namely MoS2 and WSe2, taking advantage of an experimental setup realized inside a scanning electron microscope equipped with nano-manipulated probe-tips, used for positioning a tip-shaped anode at a nanometric distance from the emitting surface. For n-type WSe2 monolayer on Si/SiO2 substrate, we show that electrons can be extracted also from the flat part of the flake with a current intensity up to few nanoamperes. More interestingly, we demonstrate that the field emission current can be modulated by the back-gate voltage that controls the n-type doping of the WSe2 monolayer. Similarly, we demonstrate that monolayer MoS2 flakes are suitable for gate-controlled field emission devices, opening the way to the development of new field emission transistors based on ultrathin materials.