Distribution Calibration for Out-of-Domain Detection with Bayesian Approximation

Yanan Wu, Zhiyuan Zeng, Keqing He, Yutao Mou, Pei Wang, Weiran Xu
{"title":"Distribution Calibration for Out-of-Domain Detection with Bayesian Approximation","authors":"Yanan Wu, Zhiyuan Zeng, Keqing He, Yutao Mou, Pei Wang, Weiran Xu","doi":"10.48550/arXiv.2209.06612","DOIUrl":null,"url":null,"abstract":"Out-of-Domain (OOD) detection is a key component in a task-oriented dialog system, which aims to identify whether a query falls outside the predefined supported intent set. Previous softmax-based detection algorithms are proved to be overconfident for OOD samples. In this paper, we analyze overconfident OOD comes from distribution uncertainty due to the mismatch between the training and test distributions, which makes the model can’t confidently make predictions thus probably causes abnormal softmax scores. We propose a Bayesian OOD detection framework to calibrate distribution uncertainty using Monte-Carlo Dropout. Our method is flexible and easily pluggable to existing softmax-based baselines and gains 33.33% OOD F1 improvements with increasing only 0.41% inference time compared to MSP. Further analyses show the effectiveness of Bayesian learning for OOD detection.","PeriodicalId":91381,"journal":{"name":"Proceedings of COLING. International Conference on Computational Linguistics","volume":"36 1","pages":"608-615"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of COLING. International Conference on Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.06612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Out-of-Domain (OOD) detection is a key component in a task-oriented dialog system, which aims to identify whether a query falls outside the predefined supported intent set. Previous softmax-based detection algorithms are proved to be overconfident for OOD samples. In this paper, we analyze overconfident OOD comes from distribution uncertainty due to the mismatch between the training and test distributions, which makes the model can’t confidently make predictions thus probably causes abnormal softmax scores. We propose a Bayesian OOD detection framework to calibrate distribution uncertainty using Monte-Carlo Dropout. Our method is flexible and easily pluggable to existing softmax-based baselines and gains 33.33% OOD F1 improvements with increasing only 0.41% inference time compared to MSP. Further analyses show the effectiveness of Bayesian learning for OOD detection.
基于贝叶斯近似的域外检测分布标定
域外检测(Out-of-Domain, OOD)是面向任务的对话系统中的一个关键组件,其目的是识别查询是否超出预定义支持的意图集。以前基于softmax的检测算法被证明对OOD样本过于自信。在本文中,我们分析了过度自信的OOD来自于由于训练分布和测试分布不匹配导致的分布不确定性,这使得模型不能自信地做出预测,从而可能导致softmax分数异常。我们提出了一个贝叶斯OOD检测框架,利用蒙特卡罗Dropout来校准分布的不确定性。我们的方法灵活且易于插入到现有的基于softmax的基线中,与MSP相比,我们的方法在仅增加0.41%的推理时间的情况下获得了33.33%的OOD F1改进。进一步的分析表明了贝叶斯学习对OOD检测的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信