On the Temple lower bound for eigenvalues

L. Delves
{"title":"On the Temple lower bound for eigenvalues","authors":"L. Delves","doi":"10.1088/0305-4470/5/8/005","DOIUrl":null,"url":null,"abstract":"The author examines the relation between the Temple, Weinstein and Stevenson bounds for an arbitrary eigenvalues of a Hamiltonian H. It is shown that, in a sense which is defined, the Temple and Stevenson bounds are numerically equivalent, while the Weinstein bound is inferior to either. The Temple bound is reformulated and it is shown that the usual restriction on its validity may be relaxed; the relaxation leads to rather more convenient calculations in the presence of excited states, but not to improved lower bounds. A numerical example demonstrating the extension is given.","PeriodicalId":54612,"journal":{"name":"Physics-A Journal of General and Applied Physics","volume":"5 1","pages":"1123-1130"},"PeriodicalIF":0.0000,"publicationDate":"1972-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics-A Journal of General and Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0305-4470/5/8/005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The author examines the relation between the Temple, Weinstein and Stevenson bounds for an arbitrary eigenvalues of a Hamiltonian H. It is shown that, in a sense which is defined, the Temple and Stevenson bounds are numerically equivalent, while the Weinstein bound is inferior to either. The Temple bound is reformulated and it is shown that the usual restriction on its validity may be relaxed; the relaxation leads to rather more convenient calculations in the presence of excited states, but not to improved lower bounds. A numerical example demonstrating the extension is given.
特征值的坦普尔下界
本文研究了hamilton函数h的任意特征值的Temple界、Weinstein界和Stevenson界之间的关系。结果表明,在定义的意义上,Temple界和Stevenson界在数值上是等价的,而Weinstein界则不如两者。对坦普尔界进行了重新表述,并表明通常对其有效性的限制可以放宽;在激发态存在的情况下,弛豫导致了相当方便的计算,但没有改进下界。最后给出了一个数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信