M. Alam, Parth Sarker, D. H. Sani, Md. Faruque Miah
{"title":"Curbing Key Digestive Enzymes by Three Plant Extracts for Sustainable Management of Postprandial Hyperglycemia","authors":"M. Alam, Parth Sarker, D. H. Sani, Md. Faruque Miah","doi":"10.2174/1570180820666230518100900","DOIUrl":null,"url":null,"abstract":"\n\nDiabetes mellitus is a chronic metabolic condition marked by persistently elevated blood sugar levels. Key digestive enzymes viz. α-amylase and α-glucosidase, hydrolyze consumed carbohydrates into glucose which raises the postprandial blood glucose level in a diabetic patient. So, the development of α-amylase and α-glucosidase inhibitors procured from medicinal plants to retard starch digestion is an alternative approach for controlling type 2 diabetes mellitus.\n\n\n\nThe current study aimed to evaluate the inhibitory potentials of the key digestive enzymes viz. α-amylase and α-glucosidase by the extracts of three medicinal plants; red dragon fruit (Hylocereus polyrhizus) pulp and peel, bamboo (Bambusa vulgaris) shoot, turnip (Brassica rapa L.) shoot and leaf by performing α-amylase and α-glucosidase inhibition assays in vitro.\n\n\n\nInhibition of α-amylase activity was conducted using 3,5-dinitrosalicylic acid method, and 4-Nitrophenyl-α-D-glucopyranoside was used as a substrate to perform α-glucosidase inhibition assay in vitro.\n\n\n\nAmong all the selected sample extracts, red dragon fruit pulp expressed the highest percentage of α-amylase inhibition (59.73±4.33%) at the concentration of 1000 μg/mL which is comparable to standard antidiabetic drug Acarbose (70.59±2.64%), whereas the lowest inhibition was observed in turnip shoot extract (42.48±2.10%) at the same concentration. In terms of α-glucosidase inhibition activity, again, red dragon fruit pulp extract demonstrated the maximum inhibition rate (56.42±2.38%) at 1000 μg/mL concentration. This is respectable in comparison to the reference Acarbose (66.45±1.78%). In contrast, turnip shoot extracts displayed the lowest α-glucosidase inhibition activity (38.27±2.21%) at the same concentration.\n\n\n\nThe current study demonstrated that the red dragon fruit pulp extract possesses substantial antihyperglycemic activity (α-amylase inhibition: 59.73±4.33%, α-glucosidase inhibition: 56.42±2.38%) in vitro, which could be a putative nutraceutical to manage postprandial hyperglycemia.\n","PeriodicalId":18063,"journal":{"name":"Letters in Drug Design & Discovery","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Drug Design & Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1570180820666230518100900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes mellitus is a chronic metabolic condition marked by persistently elevated blood sugar levels. Key digestive enzymes viz. α-amylase and α-glucosidase, hydrolyze consumed carbohydrates into glucose which raises the postprandial blood glucose level in a diabetic patient. So, the development of α-amylase and α-glucosidase inhibitors procured from medicinal plants to retard starch digestion is an alternative approach for controlling type 2 diabetes mellitus.
The current study aimed to evaluate the inhibitory potentials of the key digestive enzymes viz. α-amylase and α-glucosidase by the extracts of three medicinal plants; red dragon fruit (Hylocereus polyrhizus) pulp and peel, bamboo (Bambusa vulgaris) shoot, turnip (Brassica rapa L.) shoot and leaf by performing α-amylase and α-glucosidase inhibition assays in vitro.
Inhibition of α-amylase activity was conducted using 3,5-dinitrosalicylic acid method, and 4-Nitrophenyl-α-D-glucopyranoside was used as a substrate to perform α-glucosidase inhibition assay in vitro.
Among all the selected sample extracts, red dragon fruit pulp expressed the highest percentage of α-amylase inhibition (59.73±4.33%) at the concentration of 1000 μg/mL which is comparable to standard antidiabetic drug Acarbose (70.59±2.64%), whereas the lowest inhibition was observed in turnip shoot extract (42.48±2.10%) at the same concentration. In terms of α-glucosidase inhibition activity, again, red dragon fruit pulp extract demonstrated the maximum inhibition rate (56.42±2.38%) at 1000 μg/mL concentration. This is respectable in comparison to the reference Acarbose (66.45±1.78%). In contrast, turnip shoot extracts displayed the lowest α-glucosidase inhibition activity (38.27±2.21%) at the same concentration.
The current study demonstrated that the red dragon fruit pulp extract possesses substantial antihyperglycemic activity (α-amylase inhibition: 59.73±4.33%, α-glucosidase inhibition: 56.42±2.38%) in vitro, which could be a putative nutraceutical to manage postprandial hyperglycemia.