Surfactants and Their Applications for Remediation of Hydrophobic Organic Contaminants in Soils

R. Saint-Fort
{"title":"Surfactants and Their Applications for Remediation of Hydrophobic Organic Contaminants in Soils","authors":"R. Saint-Fort","doi":"10.5772/intechopen.100596","DOIUrl":null,"url":null,"abstract":"Soil contaminated with ubiquitous hydrophobic organic contaminants (HOCs) is a worldwide recurring concern arising from their indiscriminate disposal, improper management, and accidental spills. A wide range of traditional remedial strategies have been the common practice. However, these treatment methods have become cost prohibitive, not environmental friendly, and less accepted by society. Surfactant-enhanced remediation technology represents a cost-effective and green technology alternative to remediate such contaminated sites. Surfactant remediation technologies are conducted in-situ or ex-situ as two broad categories, or in combination. Among these technologies are soil flushing, washing, phytoremediation, and bioremediation. More applied research continues to quantify the efficiency of surfactant-enhanced mass transfer phase using a single surfactant solution while their binary blends to remove mixed HOCs in soils are also a focus of interest for research. There is a great potential to develop novel synthetic and biosurfactants that will exhibit higher biodegradability, less toxicity, higher removal efficiency, more economical and more recyclable. This work thus provides a review of the applications and importance of surfactant-enhanced remediation of soil contaminated with HOCs. Relevant environmental factors, soil properties, surfactant chemistry, mechanisms, mass transfer phase, and field designs are summarized and discussed with purposes of providing greater context and understanding of surfactant-enhanced remediation systems.","PeriodicalId":22170,"journal":{"name":"Surfactants [Working Title]","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfactants [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Soil contaminated with ubiquitous hydrophobic organic contaminants (HOCs) is a worldwide recurring concern arising from their indiscriminate disposal, improper management, and accidental spills. A wide range of traditional remedial strategies have been the common practice. However, these treatment methods have become cost prohibitive, not environmental friendly, and less accepted by society. Surfactant-enhanced remediation technology represents a cost-effective and green technology alternative to remediate such contaminated sites. Surfactant remediation technologies are conducted in-situ or ex-situ as two broad categories, or in combination. Among these technologies are soil flushing, washing, phytoremediation, and bioremediation. More applied research continues to quantify the efficiency of surfactant-enhanced mass transfer phase using a single surfactant solution while their binary blends to remove mixed HOCs in soils are also a focus of interest for research. There is a great potential to develop novel synthetic and biosurfactants that will exhibit higher biodegradability, less toxicity, higher removal efficiency, more economical and more recyclable. This work thus provides a review of the applications and importance of surfactant-enhanced remediation of soil contaminated with HOCs. Relevant environmental factors, soil properties, surfactant chemistry, mechanisms, mass transfer phase, and field designs are summarized and discussed with purposes of providing greater context and understanding of surfactant-enhanced remediation systems.
表面活性剂及其在土壤中疏水性有机污染物修复中的应用
土壤被无处不在的疏水性有机污染物(hoc)污染是世界范围内反复出现的问题,原因是它们的无差别处理、管理不当和意外泄漏。广泛的传统补救策略一直是常见的做法。然而,这些处理方法已经变得成本过高,不环保,不被社会接受。表面活性剂增强修复技术是一种经济有效的绿色修复技术。表面活性剂修复技术分为原位修复和非原位修复两大类,或两者结合。这些技术包括土壤冲洗、洗涤、植物修复和生物修复。更多的应用研究继续量化使用单一表面活性剂溶液的表面活性剂增强传质相的效率,而它们的二元混合物去除土壤中的混合hoc也是研究的重点。新型合成和生物表面活性剂具有较高的生物可降解性、较低的毒性、较高的去除效率、较高的经济性和可回收性,具有很大的开发潜力。因此,本文综述了表面活性剂增强修复受HOCs污染土壤的应用及其重要性。总结和讨论了相关的环境因素、土壤性质、表面活性剂化学、机理、传质阶段和现场设计,目的是为表面活性剂增强修复系统提供更大的背景和理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信