Towards Just, Fair and Interpretable Methods for Judicial Subset Selection

Lingxiao Huang, Julia Wei, Elisa Celis
{"title":"Towards Just, Fair and Interpretable Methods for Judicial Subset Selection","authors":"Lingxiao Huang, Julia Wei, Elisa Celis","doi":"10.1145/3375627.3375848","DOIUrl":null,"url":null,"abstract":"In many judicial systems -- including the United States courts of appeals, the European Court of Justice, the UK Supreme Court and the Supreme Court of Canada -- a subset of judges is selected from the entire judicial body for each case in order to hear the arguments and decide the judgment. Ideally, the subset selected is representative, i.e., the decision of the subset would match what the decision of the entire judicial body would have been had they all weighed in on the case. Further, the process should be fair in that all judges should have similar workloads, and the selection process should not allow for certain judge's opinions to be silenced or amplified via case assignments. Lastly, in order to be practical and trustworthy, the process should also be interpretable, easy to use, and (if algorithmic) computationally efficient. In this paper, we propose an algorithmic method for the judicial subset selection problem that satisfies all of the above criteria. The method satisfies fairness by design, and we prove that it has optimal representativeness asymptotically for a large range of parameters and under noisy information models about judge opinions -- something no existing methods can provably achieve. We then assess the benefits of our approach empirically by counterfactually comparing against the current practice and recent alternative algorithmic approaches using cases from the United States courts of appeals database.","PeriodicalId":93612,"journal":{"name":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375627.3375848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In many judicial systems -- including the United States courts of appeals, the European Court of Justice, the UK Supreme Court and the Supreme Court of Canada -- a subset of judges is selected from the entire judicial body for each case in order to hear the arguments and decide the judgment. Ideally, the subset selected is representative, i.e., the decision of the subset would match what the decision of the entire judicial body would have been had they all weighed in on the case. Further, the process should be fair in that all judges should have similar workloads, and the selection process should not allow for certain judge's opinions to be silenced or amplified via case assignments. Lastly, in order to be practical and trustworthy, the process should also be interpretable, easy to use, and (if algorithmic) computationally efficient. In this paper, we propose an algorithmic method for the judicial subset selection problem that satisfies all of the above criteria. The method satisfies fairness by design, and we prove that it has optimal representativeness asymptotically for a large range of parameters and under noisy information models about judge opinions -- something no existing methods can provably achieve. We then assess the benefits of our approach empirically by counterfactually comparing against the current practice and recent alternative algorithmic approaches using cases from the United States courts of appeals database.
司法子集选择的公正、公平与可解释性方法探讨
在许多司法系统中,包括美国上诉法院、欧洲法院、英国最高法院和加拿大最高法院,每个案件都从整个司法机构中选出一部分法官,听取辩论并作出判决。理想情况下,所选择的子集具有代表性,即子集的决定将与整个司法机构在他们都对案件进行权衡时的决定相匹配。此外,选拔过程应该是公平的,因为所有法官的工作量应该相似,选拔过程不应该允许通过分配案件来压制或扩大某些法官的意见。最后,为了实用和值得信赖,该过程还应该是可解释的,易于使用的,并且(如果是算法)计算效率高。在本文中,我们提出了一种满足上述所有条件的司法子集选择问题的算法方法。该方法从设计上满足了公平性,并证明了该方法在大范围参数和噪声信息模型下具有最优代表性,这是现有方法无法证明的。然后,我们利用美国上诉法院数据库中的案例,通过与当前实践和最近的替代算法方法进行反事实比较,从经验上评估我们方法的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信