Precision Annealing Monte Carlo Methods for Statistical Data Assimilation: Metropolis-Hastings Procedures

Adrian S. Wong, Kangbo Hao, Zheng Fang, H. Abarbanel
{"title":"Precision Annealing Monte Carlo Methods for Statistical Data Assimilation: Metropolis-Hastings Procedures","authors":"Adrian S. Wong, Kangbo Hao, Zheng Fang, H. Abarbanel","doi":"10.5194/NPG-2019-1","DOIUrl":null,"url":null,"abstract":"Abstract. Statistical Data Assimilation (SDA) is the transfer of information from field or laboratory observations to a user selected model of the dynamical system producing those observations. The data is noisy and the model has errors; the information transfer addresses properties of the conditional probability distribution of the states of the model conditioned on the observations. The quantities of interest in SDA are the conditional expected values of functions of the model state, and these require the approximate evaluation of high dimensional integrals. We introduce a conditional probability distribution and use the Laplace method with annealing to identify the maxima of the conditional probability distribution. The annealing method slowly increases the precision term of the model as it enters the Laplace method. In this paper, we extend the idea of precision annealing (PA) to Monte Carlo calculations of conditional expected values using Metropolis-Hastings methods.\n","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/NPG-2019-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. Statistical Data Assimilation (SDA) is the transfer of information from field or laboratory observations to a user selected model of the dynamical system producing those observations. The data is noisy and the model has errors; the information transfer addresses properties of the conditional probability distribution of the states of the model conditioned on the observations. The quantities of interest in SDA are the conditional expected values of functions of the model state, and these require the approximate evaluation of high dimensional integrals. We introduce a conditional probability distribution and use the Laplace method with annealing to identify the maxima of the conditional probability distribution. The annealing method slowly increases the precision term of the model as it enters the Laplace method. In this paper, we extend the idea of precision annealing (PA) to Monte Carlo calculations of conditional expected values using Metropolis-Hastings methods.
统计数据同化的精密退火蒙特卡罗方法:大都会-黑斯廷斯程序
摘要统计数据同化(SDA)是将现场或实验室观测的信息传递到产生这些观测的用户选择的动力系统模型。数据有噪声,模型存在误差;信息传递处理了模型状态的条件概率分布的属性,这些属性以观测值为条件。SDA中感兴趣的量是模型状态函数的条件期望值,这些需要对高维积分进行近似评估。我们引入了一个条件概率分布,并使用拉普拉斯退火法来识别条件概率分布的最大值。退火方法在进入拉普拉斯方法时,缓慢地增加模型的精度项。本文利用Metropolis-Hastings方法,将精密退火(PA)的思想推广到条件期望值的蒙特卡罗计算中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信