Integrating Plausibility Checks and Machine Learning for Misbehavior Detection in VANET

Steven So, Prinkle Sharma, J. Petit
{"title":"Integrating Plausibility Checks and Machine Learning for Misbehavior Detection in VANET","authors":"Steven So, Prinkle Sharma, J. Petit","doi":"10.1109/ICMLA.2018.00091","DOIUrl":null,"url":null,"abstract":"The safety and efficiency of vehicular communications rely on the correctness of the data exchanged between vehicles. In this paper we address the issue of detecting and classifying location spoofing misbehavior using the VeReMi dataset. We propose a framework for a system that uses plausibility checks as a feature vector for machine learning models, used to detect and classify misbehavior. Using KNN and SVM, our results show we can improve the overall detection precision of the plausibility checks used in the feature vectors by over 20%, while maintaining a recall within 5%. We have also proven once a misbehavior has been detected it is possible to classify different types of known misbehavior's. Classifying the misbehavior types allows for more accurate and specific action steps to counteract the attacks, hence improving the ability to recover safety and security in the system.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"43 1","pages":"564-571"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

Abstract

The safety and efficiency of vehicular communications rely on the correctness of the data exchanged between vehicles. In this paper we address the issue of detecting and classifying location spoofing misbehavior using the VeReMi dataset. We propose a framework for a system that uses plausibility checks as a feature vector for machine learning models, used to detect and classify misbehavior. Using KNN and SVM, our results show we can improve the overall detection precision of the plausibility checks used in the feature vectors by over 20%, while maintaining a recall within 5%. We have also proven once a misbehavior has been detected it is possible to classify different types of known misbehavior's. Classifying the misbehavior types allows for more accurate and specific action steps to counteract the attacks, hence improving the ability to recover safety and security in the system.
集成可信性检查和机器学习的VANET不当行为检测
车辆通信的安全性和效率依赖于车辆之间交换数据的正确性。在本文中,我们解决了使用VeReMi数据集检测和分类位置欺骗不当行为的问题。我们提出了一个系统框架,该框架使用可信性检查作为机器学习模型的特征向量,用于检测和分类不当行为。使用KNN和SVM,我们的结果表明,我们可以将特征向量中使用的可信性检查的整体检测精度提高20%以上,同时将召回率保持在5%以内。我们还证明,一旦发现不良行为,就可以对已知的不同类型的不良行为进行分类。通过对错误行为类型进行分类,可以采取更准确、更具体的操作步骤来对抗攻击,从而提高恢复系统安全性的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信