Exploiting Convolutional Neural Networks for Phonotactic Based Dialect Identification

M. Najafian, Sameer Khurana, Suwon Shon, Ahmed Ali, James R. Glass
{"title":"Exploiting Convolutional Neural Networks for Phonotactic Based Dialect Identification","authors":"M. Najafian, Sameer Khurana, Suwon Shon, Ahmed Ali, James R. Glass","doi":"10.1109/ICASSP.2018.8461486","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate different approaches for Dialect Identification (DID) in Arabic broadcast speech. Dialects differ in their inventory of phonological segments. This paper proposes a new phonotactic based feature representation approach which enables discrimination among different occurrences of the same phone n-grams with different phone duration and probability statistics. To achieve further gain in accuracy we used multi-lingual phone recognizers, trained separately on Arabic, English, Czech, Hungarian and Russian languages. We use Support Vector Machines (SVMs), and Convolutional Neural Networks (CNN s) as backend classifiers throughout the study. The final system fusion results in 24.7% and 19.0% relative error rate reduction compared to that of a conventional phonotactic DID, and i-vectors with bottleneck features.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"7 1","pages":"5174-5178"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

In this paper, we investigate different approaches for Dialect Identification (DID) in Arabic broadcast speech. Dialects differ in their inventory of phonological segments. This paper proposes a new phonotactic based feature representation approach which enables discrimination among different occurrences of the same phone n-grams with different phone duration and probability statistics. To achieve further gain in accuracy we used multi-lingual phone recognizers, trained separately on Arabic, English, Czech, Hungarian and Russian languages. We use Support Vector Machines (SVMs), and Convolutional Neural Networks (CNN s) as backend classifiers throughout the study. The final system fusion results in 24.7% and 19.0% relative error rate reduction compared to that of a conventional phonotactic DID, and i-vectors with bottleneck features.
利用卷积神经网络进行语音法方言识别
本文研究了阿拉伯语广播语音中不同的方言识别方法。方言的不同之处在于它们的音段清单。本文提出了一种新的基于音致性的特征表示方法,该方法可以区分具有不同电话时长和概率统计的相同电话n-gram的不同出现次数。为了进一步提高准确性,我们使用了多语言电话识别器,分别训练了阿拉伯语、英语、捷克语、匈牙利语和俄语。我们在整个研究中使用支持向量机(svm)和卷积神经网络(CNN)作为后端分类器。与传统的语音定向DID和具有瓶颈特征的i向量相比,最终的系统融合结果使相对错误率降低了24.7%和19.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信