Linear dependency modeling for feature fusion

A. J. Ma, P. Yuen
{"title":"Linear dependency modeling for feature fusion","authors":"A. J. Ma, P. Yuen","doi":"10.1109/ICCV.2011.6126477","DOIUrl":null,"url":null,"abstract":"This paper addresses the independent assumption issue in fusion process. In the last decade, dependency modeling techniques were developed under a specific distribution of classifiers. This paper proposes a new framework to model the dependency between features without any assumption on feature/classifier distribution. In this paper, we prove that feature dependency can be modeled by a linear combination of the posterior probabilities under some mild assumptions. Based on the linear combination property, two methods, namely Linear Classifier Dependency Modeling (LCDM) and Linear Feature Dependency Modeling (LFDM), are derived and developed for dependency modeling in classifier level and feature level, respectively. The optimal models for LCDM and LFDM are learned by maximizing the margin between the genuine and imposter posterior probabilities. Both synthetic data and real datasets are used for experiments. Experimental results show that LFDM outperforms all existing combination methods.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"25 1","pages":"2041-2048"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper addresses the independent assumption issue in fusion process. In the last decade, dependency modeling techniques were developed under a specific distribution of classifiers. This paper proposes a new framework to model the dependency between features without any assumption on feature/classifier distribution. In this paper, we prove that feature dependency can be modeled by a linear combination of the posterior probabilities under some mild assumptions. Based on the linear combination property, two methods, namely Linear Classifier Dependency Modeling (LCDM) and Linear Feature Dependency Modeling (LFDM), are derived and developed for dependency modeling in classifier level and feature level, respectively. The optimal models for LCDM and LFDM are learned by maximizing the margin between the genuine and imposter posterior probabilities. Both synthetic data and real datasets are used for experiments. Experimental results show that LFDM outperforms all existing combination methods.
特征融合的线性依赖建模
本文解决了核聚变过程中的独立假设问题。在过去十年中,依赖关系建模技术是在分类器的特定分布下开发的。本文提出了一个新的框架来建模特征之间的依赖关系,而不需要假设特征/分类器的分布。在本文中,我们证明了在一些温和的假设下,特征依赖可以用后验概率的线性组合来建模。基于线性组合特性,分别推导和发展了分类器级和特征级依赖建模的线性分类器依赖建模(LCDM)和线性特征依赖建模(LFDM)方法。LCDM和LFDM的最优模型是通过最大化真实和冒牌后验概率之间的余量来学习的。实验采用了合成数据和真实数据集。实验结果表明,LFDM优于现有的组合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信