Linear logic without boxes

Georges Gonthier, M. Abadi, J. Lévy
{"title":"Linear logic without boxes","authors":"Georges Gonthier, M. Abadi, J. Lévy","doi":"10.1109/LICS.1992.185535","DOIUrl":null,"url":null,"abstract":"J.-Y. Girard's original definition of proof nets for linear logic involves boxes. The box is the unit for erasing and duplicating fragments of proof nets. It imposes synchronization, limits sharing, and impedes a completely local view of computation. The authors describe an implementation of proof nets without boxes. Proof nets are translated into graphs of the sort used in optimal lambda -calculus implementations; computation is performed by simple graph rewriting. This graph implementation helps in understanding optimal reductions in the lambda -calculus and in the various programming languages inspired by linear logic.<<ETX>>","PeriodicalId":6412,"journal":{"name":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","volume":"21 1","pages":"223-234"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1992.185535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

Abstract

J.-Y. Girard's original definition of proof nets for linear logic involves boxes. The box is the unit for erasing and duplicating fragments of proof nets. It imposes synchronization, limits sharing, and impedes a completely local view of computation. The authors describe an implementation of proof nets without boxes. Proof nets are translated into graphs of the sort used in optimal lambda -calculus implementations; computation is performed by simple graph rewriting. This graph implementation helps in understanding optimal reductions in the lambda -calculus and in the various programming languages inspired by linear logic.<>
无框线性逻辑
J.-Y。吉拉德对线性逻辑证明网的最初定义涉及到盒子。该盒是用于擦除和复制防网碎片的单元。它强制同步,限制共享,并阻碍计算的完全局部视图。作者描述了一种无箱防网的实现方法。证明网被转换成最优λ演算实现中使用的那种图;计算通过简单的图重写来完成。这个图形实现有助于理解λ演算和各种受线性逻辑启发的编程语言的最佳化简
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信