Benoît Rainglet, Cindy Le Hel, Yvan Chalamet, V. Bounor-Legaré, C. Forest, P. Cassagnau
{"title":"Extensional rheology and CO2 foaming of thermoplastics vulcanizates: Influence of the crosslinking chemistry","authors":"Benoît Rainglet, Cindy Le Hel, Yvan Chalamet, V. Bounor-Legaré, C. Forest, P. Cassagnau","doi":"10.1177/0021955X221080677","DOIUrl":null,"url":null,"abstract":"The objective of this study is to investigate the ability of thermoplastic vulcanizates (TPVs) (materials based on PP/EPDM blend) to foam under CO2 batch conditions. The EPDM phase, which is dispersed into the PP phase, was dynamically crosslinked either by a phenolic resin (Resol) or by a radical peroxide (dicumyl peroxide). The results show an influence of the crosslinking chemistry on the extensional viscosity of the TPV. Regarding radical chemistry, the peroxide induces polypropylene degradation by β-scission reaction during the dynamic crosslinking process. As a result, the ability of the TPV to deform under extensional flow (Hencky deformation at break <0.5) is greatly reduced. On the contrary, the Resol-based TPV has demonstrated a non-linear viscosity behaviour (strain hardening) and a great ability to deform (Hencky deformation at break >1.5). This unexpected result for a non-homogeneous system can be explained by the confinement of the PP phase between EPDM nodules which gives to the PP chains a gel rheological behaviour. In addition, the influence of the addition of carbon black filler has also been studied. Finally, the relationship between extensional viscosity and physical foaming has been investigated. As for a homogeneous polymer, the extensional viscosity has been proved to be a key factor to estimate the foaming behaviour of complex systems like TPV. Hence, the importance of non-linear viscosity for a multi-phasic polymer to ensure foaming ability has been demonstrated.","PeriodicalId":15236,"journal":{"name":"Journal of Cellular Plastics","volume":"11 1","pages":"569 - 582"},"PeriodicalIF":3.2000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Plastics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0021955X221080677","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
The objective of this study is to investigate the ability of thermoplastic vulcanizates (TPVs) (materials based on PP/EPDM blend) to foam under CO2 batch conditions. The EPDM phase, which is dispersed into the PP phase, was dynamically crosslinked either by a phenolic resin (Resol) or by a radical peroxide (dicumyl peroxide). The results show an influence of the crosslinking chemistry on the extensional viscosity of the TPV. Regarding radical chemistry, the peroxide induces polypropylene degradation by β-scission reaction during the dynamic crosslinking process. As a result, the ability of the TPV to deform under extensional flow (Hencky deformation at break <0.5) is greatly reduced. On the contrary, the Resol-based TPV has demonstrated a non-linear viscosity behaviour (strain hardening) and a great ability to deform (Hencky deformation at break >1.5). This unexpected result for a non-homogeneous system can be explained by the confinement of the PP phase between EPDM nodules which gives to the PP chains a gel rheological behaviour. In addition, the influence of the addition of carbon black filler has also been studied. Finally, the relationship between extensional viscosity and physical foaming has been investigated. As for a homogeneous polymer, the extensional viscosity has been proved to be a key factor to estimate the foaming behaviour of complex systems like TPV. Hence, the importance of non-linear viscosity for a multi-phasic polymer to ensure foaming ability has been demonstrated.
期刊介绍:
The Journal of Cellular Plastics is a fully peer reviewed international journal that publishes original research and review articles covering the latest advances in foamed plastics technology.