Incorporating context and trends in news recommender systems

A. Lommatzsch, B. Kille, S. Albayrak
{"title":"Incorporating context and trends in news recommender systems","authors":"A. Lommatzsch, B. Kille, S. Albayrak","doi":"10.1145/3106426.3109433","DOIUrl":null,"url":null,"abstract":"In our fast changing world, data streams move into the focus. In this paper, we study recommender systems for news portals. Compared with traditional recommender scenarios based on static data sets, the short life cycle of news items and the dynamics in users' preferences are major challenges when developing news recommender systems. This motivates us to research methods facilitating the inclusion of context and trends into news recommender systems. We explain specific requirements for news recommender system and discuss approaches incorporating trends and temporal user habits in order to improve news recommender system. A detailed data analysis motivates our approach. In addition, we discuss experiences of applying news recommendation algorithms online. The evaluation shows that approaches come with specific strengths and weaknesses. Consequently, publishers should select the recommendation strategy with the specific requirements in mind.","PeriodicalId":20685,"journal":{"name":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106426.3109433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In our fast changing world, data streams move into the focus. In this paper, we study recommender systems for news portals. Compared with traditional recommender scenarios based on static data sets, the short life cycle of news items and the dynamics in users' preferences are major challenges when developing news recommender systems. This motivates us to research methods facilitating the inclusion of context and trends into news recommender systems. We explain specific requirements for news recommender system and discuss approaches incorporating trends and temporal user habits in order to improve news recommender system. A detailed data analysis motivates our approach. In addition, we discuss experiences of applying news recommendation algorithms online. The evaluation shows that approaches come with specific strengths and weaknesses. Consequently, publishers should select the recommendation strategy with the specific requirements in mind.
在新闻推荐系统中结合上下文和趋势
在这个瞬息万变的世界里,数据流成为人们关注的焦点。本文主要研究新闻门户网站的推荐系统。与基于静态数据集的传统推荐场景相比,新闻项目的短生命周期和用户偏好的动态性是开发新闻推荐系统面临的主要挑战。这促使我们研究将上下文和趋势纳入新闻推荐系统的方法。我们解释了新闻推荐系统的具体要求,并讨论了结合趋势和时间用户习惯的方法,以改进新闻推荐系统。详细的数据分析激励了我们的方法。此外,我们还讨论了在线应用新闻推荐算法的经验。评估表明,这些方法有其特定的优点和缺点。因此,发布者应该在选择推荐策略时考虑到特定的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信