Aplicación de la inteligencia artificial en el laboratorio de reproducción asistida. Trabajo de revisión

Paula Martín-Climent , Juan M. Moreno-García
{"title":"Aplicación de la inteligencia artificial en el laboratorio de reproducción asistida. Trabajo de revisión","authors":"Paula Martín-Climent ,&nbsp;Juan M. Moreno-García","doi":"10.1016/j.medre.2022.100119","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>The aim of this review is to learn about the current situation of artificial intelligence for clinical use in assisted reproduction based on a study of the limitations that have been found.</p></div><div><h3>Search Methods</h3><p>An exhaustive review is carried out through databases such as PubMed, Elsevier and the library of scientific societies, searching for original articles, using a combination of keywords such as Artificial intelligence, FIV, ART.</p></div><div><h3>Results</h3><p>There are algorithms capable of analysing different seminal parameters, among which the concentration, motility and morphology of human sperm stand out, and it is on this last parameter where the fundamental role of artificial intelligence is focused. Moreover, algorithms are being developed with static images or time-lapse sequences both at different specific points of embryo development and at specific periods.</p></div><div><h3>Conclusions</h3><p>Much of the literature is retrospective, so most of the algorithms appear to be in the early stages. In the commercial world, there is also a need for corroborative studies. The limitations often encountered are, in addition to the nature of the study, getting an explainable algorithm, introducing other parameters that also affect the outcome and the data set. It is therefore necessary to conduct randomised controlled trials in different clinics in which explainable algorithms are presented that through the analysis of different parameters achieve reliable results for clinical practice.</p></div>","PeriodicalId":100911,"journal":{"name":"Medicina Reproductiva y Embriología Clínica","volume":"9 3","pages":"Article 100119"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicina Reproductiva y Embriología Clínica","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S234093202200007X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

The aim of this review is to learn about the current situation of artificial intelligence for clinical use in assisted reproduction based on a study of the limitations that have been found.

Search Methods

An exhaustive review is carried out through databases such as PubMed, Elsevier and the library of scientific societies, searching for original articles, using a combination of keywords such as Artificial intelligence, FIV, ART.

Results

There are algorithms capable of analysing different seminal parameters, among which the concentration, motility and morphology of human sperm stand out, and it is on this last parameter where the fundamental role of artificial intelligence is focused. Moreover, algorithms are being developed with static images or time-lapse sequences both at different specific points of embryo development and at specific periods.

Conclusions

Much of the literature is retrospective, so most of the algorithms appear to be in the early stages. In the commercial world, there is also a need for corroborative studies. The limitations often encountered are, in addition to the nature of the study, getting an explainable algorithm, introducing other parameters that also affect the outcome and the data set. It is therefore necessary to conduct randomised controlled trials in different clinics in which explainable algorithms are presented that through the analysis of different parameters achieve reliable results for clinical practice.

人工智能在辅助生殖实验室的应用。修订工作
本综述的目的是在研究人工智能在辅助生殖中的局限性的基础上,了解人工智能在临床应用的现状。检索方法通过PubMed、Elsevier和科学学会图书馆等数据库进行详尽的审查,使用人工智能、FIV、ART等关键词组合搜索原创文章。结果有一些算法能够分析不同的精子参数,其中人类精子的浓度、活力和形态是最突出的,而人工智能的基本作用集中在这最后一个参数上。此外,在胚胎发育的不同特定点和特定时期,正在开发使用静态图像或延时序列的算法。结论:大部分文献是回顾性的,因此大多数算法似乎处于早期阶段。在商业领域,也需要进行确证性研究。除了研究的性质之外,经常遇到的限制是获得一个可解释的算法,引入其他也影响结果和数据集的参数。因此,有必要在不同的诊所进行随机对照试验,通过对不同参数的分析,提出可解释的算法,为临床实践获得可靠的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信