On the rank of π1(Ham)

IF 0.6 3区 数学 Q3 MATHEMATICS
Andr'es Pedroza
{"title":"On the rank of π1(Ham)","authors":"Andr'es Pedroza","doi":"10.2140/agt.2022.22.1325","DOIUrl":null,"url":null,"abstract":"We show that for any positive integer $k$ there exists a closed symplectic $4$-manifold, such that the rank of the fundamental group of the group of Hamiltonian diffeomorphisms is at least $k.$","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"21 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2022.22.1325","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We show that for any positive integer $k$ there exists a closed symplectic $4$-manifold, such that the rank of the fundamental group of the group of Hamiltonian diffeomorphisms is at least $k.$
关于π (Ham)的秩
证明了对于任意正整数k存在一个闭辛流形,使得哈密顿微分同态群的基群的秩至少为k
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信