Model Predictive Direct Torque Control of induction machines using a two-fold state approximation strategy

A. Mahdizadeh, Elham Tofighi, M. Feyzi
{"title":"Model Predictive Direct Torque Control of induction machines using a two-fold state approximation strategy","authors":"A. Mahdizadeh, Elham Tofighi, M. Feyzi","doi":"10.1109/EPE.2014.6911028","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for adopting the concept of Model Predictive Control (MPC) in Direct Torque Control (DTC) of Electrical machines. The proposed algorithm enhances the performance of a DTC controller by keeping the motor's electromagnetic torque and stator flux magnitude within predefined hysteresis bounds while minimizing the switching power losses. The MPC controller predicts the output trajectories using an explicit model of the drive. A two-fold state approximation policy limits the quantity of the admissible outputs in drawing the tree of feasible trajectories over the prediction horizon. The chains of switching sequences and relevant switching losses are identified and a dynamic programming algorithm chooses the chain of switching sequences that minimizes a cost function on power losses in the inverter. Using receding horizon policy, only the first component of this chain is applied to the machine as the input signal at every sampling instant. The simulations are performed a small-sized induction motor-drive unit. The outcomes verify the advantages of this method in comparison with classic DTC.","PeriodicalId":6508,"journal":{"name":"2014 16th European Conference on Power Electronics and Applications","volume":"21 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th European Conference on Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPE.2014.6911028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a novel method for adopting the concept of Model Predictive Control (MPC) in Direct Torque Control (DTC) of Electrical machines. The proposed algorithm enhances the performance of a DTC controller by keeping the motor's electromagnetic torque and stator flux magnitude within predefined hysteresis bounds while minimizing the switching power losses. The MPC controller predicts the output trajectories using an explicit model of the drive. A two-fold state approximation policy limits the quantity of the admissible outputs in drawing the tree of feasible trajectories over the prediction horizon. The chains of switching sequences and relevant switching losses are identified and a dynamic programming algorithm chooses the chain of switching sequences that minimizes a cost function on power losses in the inverter. Using receding horizon policy, only the first component of this chain is applied to the machine as the input signal at every sampling instant. The simulations are performed a small-sized induction motor-drive unit. The outcomes verify the advantages of this method in comparison with classic DTC.
利用双重状态逼近策略对感应电机的预测直接转矩控制进行建模
提出了一种将模型预测控制(MPC)概念应用于电机直接转矩控制(DTC)的新方法。该算法将电机的电磁转矩和定子磁链大小保持在预定的滞回范围内,同时使开关功率损耗最小化,从而提高了DTC控制器的性能。MPC控制器使用驱动器的显式模型预测输出轨迹。在预测视界上绘制可行轨迹树时,双重状态近似策略限制了可接受输出的数量。识别开关序列链和相应的开关损耗,并采用动态规划算法选择开关序列链,使逆变器的功率损耗代价函数最小。采用视界后退策略,在每个采样时刻只将该链的第一个分量作为输入信号应用于机器。仿真是在小型感应电机驱动装置上进行的。结果验证了该方法与经典DTC相比的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信