Recent progress in all-solid-state Li-ion battery anodes

Do-Hyeon Kim, Young-Han Lee, J. Yoon, Cheol-Min Park
{"title":"Recent progress in all-solid-state Li-ion battery anodes","authors":"Do-Hyeon Kim, Young-Han Lee, J. Yoon, Cheol-Min Park","doi":"10.31613/ceramist.2023.26.2.07","DOIUrl":null,"url":null,"abstract":"Recently, there has been significant research activity in the field of energy storage systems with a focus on improving the energy density and safety of Li-ion batteries (LIBs). The liquid-state electrolytes used in LIBs have several safety issues, including flammability and decomposition due to exothermic reactions during repeated cycles. Addressing the flammability issue is particularly important for the widespread adoption of eco-friendly electric vehicles. As a result, all-solid-state batteries (ASSBs) that use stable and non-flammable solid-state electrolytes are being considered as an alternative solution. The use of solid-state electrolytes can also address concerns about thermal runaway, and research into adopting Li metal anodes is being conducted to achieve high-energy-density ASSBs. However, the problems of Li dendrite formation and solid electrolyte dissociation due to the reaction between Li and solid electrolyte still exist in ASSBs. To address these issues, many researchers are actively studying various types of anodes for ASSBs, including Li-metal, Li-interlayer, anode-free, carbon-based, oxide-based, and Li-alloy-based ASSB anodes. This study reviews recent progress and issues related to various types of ASSB anodes.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31613/ceramist.2023.26.2.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, there has been significant research activity in the field of energy storage systems with a focus on improving the energy density and safety of Li-ion batteries (LIBs). The liquid-state electrolytes used in LIBs have several safety issues, including flammability and decomposition due to exothermic reactions during repeated cycles. Addressing the flammability issue is particularly important for the widespread adoption of eco-friendly electric vehicles. As a result, all-solid-state batteries (ASSBs) that use stable and non-flammable solid-state electrolytes are being considered as an alternative solution. The use of solid-state electrolytes can also address concerns about thermal runaway, and research into adopting Li metal anodes is being conducted to achieve high-energy-density ASSBs. However, the problems of Li dendrite formation and solid electrolyte dissociation due to the reaction between Li and solid electrolyte still exist in ASSBs. To address these issues, many researchers are actively studying various types of anodes for ASSBs, including Li-metal, Li-interlayer, anode-free, carbon-based, oxide-based, and Li-alloy-based ASSB anodes. This study reviews recent progress and issues related to various types of ASSB anodes.
全固态锂离子电池阳极的最新进展
近年来,锂离子电池的能量密度和安全性已成为储能系统研究的热点。锂离子电池中使用的液态电解质存在几个安全问题,包括易燃性和在重复循环中由于放热反应而分解。解决可燃性问题对于环保电动汽车的广泛采用尤为重要。因此,使用稳定且不易燃的固态电解质的全固态电池(assb)被认为是一种替代解决方案。使用固态电解质也可以解决热失控的问题,并且正在研究采用锂金属阳极来实现高能量密度的assb。然而,由于锂与固体电解质的反应,在assb中仍然存在锂枝晶形成和固体电解质解离的问题。为了解决这些问题,许多研究人员正在积极研究各种类型的ASSB阳极,包括锂金属、锂夹层、无阳极、碳基、氧化物基和锂合金基ASSB阳极。本文综述了各类ASSB阳极的最新进展和存在的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信