{"title":"The quantum moment problem for a classical random variable and a classification of interacting Fock spaces","authors":"L. Accardi, Y. Lu","doi":"10.1142/s0219025722500035","DOIUrl":null,"url":null,"abstract":"The fact that any classical random variable with all moments has a quantum decomposition allows to associate to it a family of quantum moments. On the other hand, a classical random variable may have several inequivalent quantum decompositions, which lead to the same classical, but different quantum moments. Even in the simplest Central Limit Theorems (CLT), i.e. those of Bernoulli type, there are examples in which the corresponding quantum moments converge to the canonical quantum moments of the associated classical random variable, and examples in which this is not the case. This poses the problem to find a constructive criterium that characterizes the quantum moments associated to the canonical quantum decomposition (which is unique) with respect to the other ones. Theorem 3 of the present paper provides such a criterium. Theorem 5 deals with the case when one knows a priori that the quantum moments come from a central limit theorem (the motivation of the present paper arose in this context). It gives only a sufficient condition, but simpler to verify than the necessary and sufficient conditions of Theorem 3. Theorem 3 naturally leads to a classification of Interacting Fock Spaces (IFS) into three types. We construct examples showing that all these possibilities can effectively take place. On the way, we prove that all the best known deformations of Heisenberg commutation relations can be obtained as special cases of a general construction within the algebraic approach to the theory of orthogonal polynomials.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025722500035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The fact that any classical random variable with all moments has a quantum decomposition allows to associate to it a family of quantum moments. On the other hand, a classical random variable may have several inequivalent quantum decompositions, which lead to the same classical, but different quantum moments. Even in the simplest Central Limit Theorems (CLT), i.e. those of Bernoulli type, there are examples in which the corresponding quantum moments converge to the canonical quantum moments of the associated classical random variable, and examples in which this is not the case. This poses the problem to find a constructive criterium that characterizes the quantum moments associated to the canonical quantum decomposition (which is unique) with respect to the other ones. Theorem 3 of the present paper provides such a criterium. Theorem 5 deals with the case when one knows a priori that the quantum moments come from a central limit theorem (the motivation of the present paper arose in this context). It gives only a sufficient condition, but simpler to verify than the necessary and sufficient conditions of Theorem 3. Theorem 3 naturally leads to a classification of Interacting Fock Spaces (IFS) into three types. We construct examples showing that all these possibilities can effectively take place. On the way, we prove that all the best known deformations of Heisenberg commutation relations can be obtained as special cases of a general construction within the algebraic approach to the theory of orthogonal polynomials.