{"title":"EFFICIENT RETINAL IMAGE ENHANCEMENT USING MORPHOLOGICAL OPERATIONS","authors":"Ashanand, M. Kaur","doi":"10.4015/s1016237222500338","DOIUrl":null,"url":null,"abstract":"Manual analysis of retinal images is a complicated and time-consuming task for ophthalmologists. Retinal images are susceptible to non-uniform illumination, poor contrast, transmission error, and noise problems. For the detection of retinal abnormalities, an efficient technique is required that can identify the presence of retinal complications. This paper proposes a methodology to enhance retinal images that use morphological operations to improve the contrast and bring out the fine details in the suspicious region. The enhancement plays a vital role in detecting abnormalities in the retinal images. Luminance gain metric ([Formula: see text] is obtained from Gamma correction on luminous channel of [Formula: see text]*[Formula: see text]*[Formula: see text] (hue, saturation, and value) color model of retinal image to improve luminosity. The efficiency and strength of the proposed methodology are evaluated using the performance evaluation parameters peak signal to noise ratio (PSNR), mean square error (MSE), mean absolute error (MAE), feature structural similarity index metric (FSIM), structural similarity index metric (SSIM), spectral residual index metric (SRSIM), Reyligh feature similarity index metric (RFSIM), absolute mean brightness error (AMBE), root mean square error (RMSE), image quality index (IQI), and visual similarity index (VSI). It has been revealed from the results and statistical analysis using the Friedman test that the proposed method outperforms existing state-of-the-art enhancement techniques.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"19 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237222500338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Manual analysis of retinal images is a complicated and time-consuming task for ophthalmologists. Retinal images are susceptible to non-uniform illumination, poor contrast, transmission error, and noise problems. For the detection of retinal abnormalities, an efficient technique is required that can identify the presence of retinal complications. This paper proposes a methodology to enhance retinal images that use morphological operations to improve the contrast and bring out the fine details in the suspicious region. The enhancement plays a vital role in detecting abnormalities in the retinal images. Luminance gain metric ([Formula: see text] is obtained from Gamma correction on luminous channel of [Formula: see text]*[Formula: see text]*[Formula: see text] (hue, saturation, and value) color model of retinal image to improve luminosity. The efficiency and strength of the proposed methodology are evaluated using the performance evaluation parameters peak signal to noise ratio (PSNR), mean square error (MSE), mean absolute error (MAE), feature structural similarity index metric (FSIM), structural similarity index metric (SSIM), spectral residual index metric (SRSIM), Reyligh feature similarity index metric (RFSIM), absolute mean brightness error (AMBE), root mean square error (RMSE), image quality index (IQI), and visual similarity index (VSI). It has been revealed from the results and statistical analysis using the Friedman test that the proposed method outperforms existing state-of-the-art enhancement techniques.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.