Identification of Novel Potent Inhibitors for ATP‐Phosphoribosyl Transferase Using Three‐Dimensional Structural Database Search Technique

K. Gohda, D. Ohta, A. Kozaki, K. Fujimori, I. Mori, T. Kikuchi
{"title":"Identification of Novel Potent Inhibitors for ATP‐Phosphoribosyl Transferase Using Three‐Dimensional Structural Database Search Technique","authors":"K. Gohda, D. Ohta, A. Kozaki, K. Fujimori, I. Mori, T. Kikuchi","doi":"10.1002/1521-3838(200107)20:2<143::AID-QSAR143>3.0.CO;2-R","DOIUrl":null,"url":null,"abstract":"We identified new potent inhibitors for ATP-phosphoribosyl transferase, which is the first enzyme in histidine biosynthesis pathway, using three-dimensional database search (3D-search) technique. The 3D-search was based on the structure of product molecule, N-1-(5′-phosphoribosyl)-ATP, as a template to find molecules targeting to the binding sites of two substrates (ATP and 5′-phosphoribosyl-1-pyrophosphate), i.e., bi-substrate mimicking. Four commercially-available compounds with three different chemical classes were examined out of 36 low-molecular weight compounds selected from the hits of the searches. Amino-(chlorophenyl)-triazolopyrimidine compounds, which are the simplest and smallest ones, showed potent activity (e.g., 92% inhibition at 100 μM). The structural comparison with the product molecule suggests that the simultaneous occupation of two substrate-binding sites likely enhances the enzyme inhibition. The most potent compound examined in this study was a disulfide-bond containing molecule (IC50=50 nM), whose mode of action seems to be different from the others. Further studies using its derivatives were carried out for clarification.","PeriodicalId":20818,"journal":{"name":"Quantitative Structure-activity Relationships","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Structure-activity Relationships","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1521-3838(200107)20:2<143::AID-QSAR143>3.0.CO;2-R","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We identified new potent inhibitors for ATP-phosphoribosyl transferase, which is the first enzyme in histidine biosynthesis pathway, using three-dimensional database search (3D-search) technique. The 3D-search was based on the structure of product molecule, N-1-(5′-phosphoribosyl)-ATP, as a template to find molecules targeting to the binding sites of two substrates (ATP and 5′-phosphoribosyl-1-pyrophosphate), i.e., bi-substrate mimicking. Four commercially-available compounds with three different chemical classes were examined out of 36 low-molecular weight compounds selected from the hits of the searches. Amino-(chlorophenyl)-triazolopyrimidine compounds, which are the simplest and smallest ones, showed potent activity (e.g., 92% inhibition at 100 μM). The structural comparison with the product molecule suggests that the simultaneous occupation of two substrate-binding sites likely enhances the enzyme inhibition. The most potent compound examined in this study was a disulfide-bond containing molecule (IC50=50 nM), whose mode of action seems to be different from the others. Further studies using its derivatives were carried out for clarification.
利用三维结构数据库搜索技术鉴定ATP -磷酸核糖基转移酶的新型有效抑制剂
利用三维数据库搜索(3D-search)技术,我们发现了组氨酸生物合成途径中第一个酶atp -磷酸核糖基转移酶的新有效抑制剂。3d搜索以产物分子N-1-(5′-磷酸核糖基)-ATP的结构为模板,寻找靶向两种底物(ATP和5′-磷酸核糖基-1-焦磷酸)结合位点的分子,即双底物模拟。从搜索结果中选择的36种低分子量化合物中,检测了具有三种不同化学类别的四种商业可用化合物。其中,最简单、最小的氨基(氯苯基)-三唑嘧啶类化合物在100 μM的抑制率为92%。与产物分子的结构比较表明,同时占据两个底物结合位点可能增强了酶的抑制作用。本研究中检测到的最有效的化合物是一种含二硫键的分子(IC50=50 nM),其作用方式似乎与其他化合物不同。利用其衍生物进行了进一步的研究以澄清。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信