2022

Olivia Rice, Alicia Williams, L. Lewandowski, Tamar Roomian, J. Hsu, S. Barnhill, Susan M. Odum, M. Wally, R. B. Seymour, Kristina Neri, Matthew W. Morris, G. Hernández, Michaelle Bosse, M. Karunakar, L. Kempton, Kevin Phelps, Stephanie Sims
{"title":"2022","authors":"Olivia Rice, Alicia Williams, L. Lewandowski, Tamar Roomian, J. Hsu, S. Barnhill, Susan M. Odum, M. Wally, R. B. Seymour, Kristina Neri, Matthew W. Morris, G. Hernández, Michaelle Bosse, M. Karunakar, L. Kempton, Kevin Phelps, Stephanie Sims","doi":"10.3113/jsoa.2022.0169","DOIUrl":null,"url":null,"abstract":"How does the geometric representation of a dataset change after the application of each randomly initialized layer of a neural network? The celebrated Johnson– Lindenstrauss lemma answers this question for linear fully-connected neural networks (FNNs), stating that the geometry is essentially preserved. For FNNs with the ReLU activation, the angle between two inputs contracts according to a known mapping. The question for non-linear convolutional neural networks (CNNs) becomes much more intricate. To answer this question, we introduce a geometric framework. For linear CNNs, we show that the Johnson–Lindenstrauss lemma continues to hold, namely, that the angle between two inputs is preserved. For CNNs with ReLU activation, on the other hand, the behavior is richer: The angle between the outputs contracts, where the level of contraction depends on the nature of the inputs. In particular, after one layer, the geometry of natural images is essentially preserved, whereas for Gaussian correlated inputs, CNNs exhibit the same contracting behavior as FNNs with ReLU activation.","PeriodicalId":17143,"journal":{"name":"Journal of surgical orthopaedic advances","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of surgical orthopaedic advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3113/jsoa.2022.0169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

How does the geometric representation of a dataset change after the application of each randomly initialized layer of a neural network? The celebrated Johnson– Lindenstrauss lemma answers this question for linear fully-connected neural networks (FNNs), stating that the geometry is essentially preserved. For FNNs with the ReLU activation, the angle between two inputs contracts according to a known mapping. The question for non-linear convolutional neural networks (CNNs) becomes much more intricate. To answer this question, we introduce a geometric framework. For linear CNNs, we show that the Johnson–Lindenstrauss lemma continues to hold, namely, that the angle between two inputs is preserved. For CNNs with ReLU activation, on the other hand, the behavior is richer: The angle between the outputs contracts, where the level of contraction depends on the nature of the inputs. In particular, after one layer, the geometry of natural images is essentially preserved, whereas for Gaussian correlated inputs, CNNs exhibit the same contracting behavior as FNNs with ReLU activation.
2022
应用神经网络的每个随机初始化层后,数据集的几何表示如何变化?著名的Johnson - Lindenstrauss引理回答了线性全连接神经网络(fnn)的这个问题,指出几何结构基本上是保留的。对于具有ReLU激活的fnn,两个输入之间的角度根据已知映射收缩。非线性卷积神经网络(cnn)的问题变得更加复杂。为了回答这个问题,我们引入了一个几何框架。对于线性cnn,我们证明Johnson-Lindenstrauss引理继续成立,即两个输入之间的角度保持不变。另一方面,对于具有ReLU激活的cnn,其行为更丰富:输出之间的角度收缩,其中收缩的程度取决于输入的性质。特别是,在一层之后,自然图像的几何形状基本保持不变,而对于高斯相关输入,cnn表现出与具有ReLU激活的fnn相同的收缩行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信