Some Estimates for Riesz Transforms Associated with Schrödinger Operators

Y. H. Wang
{"title":"Some Estimates for Riesz Transforms Associated with Schrödinger Operators","authors":"Y. H. Wang","doi":"10.54503/0002-3043-2022.57.6-81-94","DOIUrl":null,"url":null,"abstract":"Abstract Let $$\\mathcal{L}=-\\Delta+V$$ be the Schrödinger operator on $$\\mathbb{R}^{n},$$ where $$n\\geq 3,$$ and nonnegative potential $$V$$ belongs to the reverse Hölder class $$RH_{q}$$ with $$n/2\\leq q<n.$$ Let $$H^{p}_{\\mathcal{L}}(\\mathbb{R}^{n})$$ denote the Hardy space related to $$\\mathcal{L}$$ and $$BMO_{\\mathcal{L}}(\\mathbb{R}^{n})$$ denote the dual space of $$H^{1}_{\\mathcal{L}}(\\mathbb{R}^{n}).$$ In this paper, we show that $$T_{\\alpha,\\beta}=V^{\\alpha}\\nabla\\mathcal{L}^{-\\beta}$$ is bounded from $$H^{p_{1}}_{\\mathcal{L}}(\\mathbb{R}^{n})$$ into $$L^{p_{2}}(\\mathbb{R}^{n})$$ for $$\\dfrac{n}{n+\\delta^{\\prime}}<p_{1}\\leq 1$$ and $$\\dfrac{1}{p_{2}}=\\dfrac{1}{p_{1}}-\\dfrac{2(\\beta-\\alpha)}{n},$$ where $$\\delta^{\\prime}=\\min\\{1,2-n/q_{0}\\}$$ and $$q_{0}$$ is the reverse Hölder index of $$V.$$ Moreover, we prove $$T^{*}_{\\alpha,\\beta}$$ is bounded on $$BMO_{\\mathcal{L}}(\\mathbb{R}^{n})$$ when $$\\beta-\\alpha=1/2.$$","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.54503/0002-3043-2022.57.6-81-94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let $$\mathcal{L}=-\Delta+V$$ be the Schrödinger operator on $$\mathbb{R}^{n},$$ where $$n\geq 3,$$ and nonnegative potential $$V$$ belongs to the reverse Hölder class $$RH_{q}$$ with $$n/2\leq q
分享
查看原文
与Schrödinger算子相关的Riesz变换的一些估计
抽象Let $$\mathcal{L}=-\Delta+V$$ 是Schrödinger的操作员 $$\mathbb{R}^{n},$$ 在哪里 $$n\geq 3,$$ 非负电位 $$V$$ 属于反向Hölder类 $$RH_{q}$$ 有 $$n/2\leq q
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信