A Comparison of Trajectory Planning and Control Frameworks for Cooperative Autonomous Driving

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
I. Viana, Husain Kanchwala, Kenan Ahiska, N. Aouf
{"title":"A Comparison of Trajectory Planning and Control Frameworks for Cooperative Autonomous Driving","authors":"I. Viana, Husain Kanchwala, Kenan Ahiska, N. Aouf","doi":"10.1115/1.4049554","DOIUrl":null,"url":null,"abstract":"\n This work considers the cooperative trajectory-planning problem along a double lane change scenario for autonomous driving. In this paper, we develop two frameworks to solve this problem based on distributed model predictive control (MPC). The first approach solves a single nonlinear MPC problem. The general idea is to introduce a collision cost function in the optimization problem at the planning task to achieve a smooth and bounded collision function, and thus to prevent the need to implement tight hard constraints. The second method uses a hierarchical scheme with two main units: a trajectory-planning layer based on mixed-integer quadratic program (MIQP) computes an on-line collision-free trajectory using simplified motion dynamics, and a tracking controller unit to follow the trajectory from the higher level using the nonlinear vehicle model. Connected and automated vehicles (CAVs) sharing their planned trajectories lay the foundation of the cooperative behavior. In the tests and evaluation of the proposed methodologies, matlab-carsim cosimulation is utilized. carsim provides the high-fidelity model for the multibody vehicle dynamics. matlab-carsim conjoint simulation experiments compare both approaches for a cooperative double lane change maneuver of two vehicles moving along a one-way three-lane road with obstacles.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4049554","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 11

Abstract

This work considers the cooperative trajectory-planning problem along a double lane change scenario for autonomous driving. In this paper, we develop two frameworks to solve this problem based on distributed model predictive control (MPC). The first approach solves a single nonlinear MPC problem. The general idea is to introduce a collision cost function in the optimization problem at the planning task to achieve a smooth and bounded collision function, and thus to prevent the need to implement tight hard constraints. The second method uses a hierarchical scheme with two main units: a trajectory-planning layer based on mixed-integer quadratic program (MIQP) computes an on-line collision-free trajectory using simplified motion dynamics, and a tracking controller unit to follow the trajectory from the higher level using the nonlinear vehicle model. Connected and automated vehicles (CAVs) sharing their planned trajectories lay the foundation of the cooperative behavior. In the tests and evaluation of the proposed methodologies, matlab-carsim cosimulation is utilized. carsim provides the high-fidelity model for the multibody vehicle dynamics. matlab-carsim conjoint simulation experiments compare both approaches for a cooperative double lane change maneuver of two vehicles moving along a one-way three-lane road with obstacles.
协同自动驾驶的轨迹规划与控制框架比较
本文研究了自动驾驶双变道场景下的协同轨迹规划问题。本文提出了两个基于分布式模型预测控制(MPC)的框架来解决这一问题。第一种方法解决单个非线性MPC问题。一般思路是在规划任务的优化问题中引入碰撞代价函数,以实现光滑有界的碰撞函数,从而避免需要实施严格的硬约束。第二种方法采用分层方案,主要包含两个单元:基于混合整数二次规划(MIQP)的轨迹规划层使用简化的运动动力学计算在线无碰撞轨迹,跟踪控制器单元使用非线性车辆模型从更高层次跟踪轨迹。互联和自动驾驶汽车共享其规划轨迹是合作行为的基础。在测试和评估所提出的方法时,使用了matlab-carsim联合仿真。Carsim为多体车辆动力学提供了高保真模型。Matlab-carsim联合仿真实验比较了两种方法在有障碍物的单向三车道道路上两车协同双变道机动的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
11.80%
发文量
79
审稿时长
24.0 months
期刊介绍: The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信