On the Inclusion Ideal Graph of Semigroups

IF 0.4 4区 数学 Q4 MATHEMATICS
Barkha Baloda, J. Kumar
{"title":"On the Inclusion Ideal Graph of Semigroups","authors":"Barkha Baloda, J. Kumar","doi":"10.1142/s1005386723000342","DOIUrl":null,"url":null,"abstract":"The inclusion ideal graph [Formula: see text] of a semigroup [Formula: see text] is an undirected simple graph whose vertices are all the nontrivial left ideals of [Formula: see text] and two distinct left ideals [Formula: see text], [Formula: see text] are adjacent if and only if either [Formula: see text] or [Formula: see text]. The purpose of this paper is to study algebraic properties of the semigroup [Formula: see text] as well as graph theoretic properties of [Formula: see text]. We investigate the connectedness of [Formula: see text] and show that the diameter of [Formula: see text] is at most 3 if it is connected. We also obtain a necessary and sufficient condition of [Formula: see text] such that the clique number of [Formula: see text] is the number of minimal left ideals of [Formula: see text]. Further, various graph invariants of [Formula: see text], viz. perfectness, planarity, girth, etc., are discussed. For a completely simple semigroup [Formula: see text], we investigate properties of [Formula: see text] including its independence number and matching number. Finally, we obtain the automorphism group of [Formula: see text].","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"18 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000342","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

The inclusion ideal graph [Formula: see text] of a semigroup [Formula: see text] is an undirected simple graph whose vertices are all the nontrivial left ideals of [Formula: see text] and two distinct left ideals [Formula: see text], [Formula: see text] are adjacent if and only if either [Formula: see text] or [Formula: see text]. The purpose of this paper is to study algebraic properties of the semigroup [Formula: see text] as well as graph theoretic properties of [Formula: see text]. We investigate the connectedness of [Formula: see text] and show that the diameter of [Formula: see text] is at most 3 if it is connected. We also obtain a necessary and sufficient condition of [Formula: see text] such that the clique number of [Formula: see text] is the number of minimal left ideals of [Formula: see text]. Further, various graph invariants of [Formula: see text], viz. perfectness, planarity, girth, etc., are discussed. For a completely simple semigroup [Formula: see text], we investigate properties of [Formula: see text] including its independence number and matching number. Finally, we obtain the automorphism group of [Formula: see text].
关于半群的包含理想图
半群的包含理想图[公式:见文]是一个无向简单图,其顶点是[公式:见文]的所有非平凡左理想和两个不同的左理想[公式:见文],[公式:见文]相邻,当且仅当[公式:见文]或[公式:见文]。本文的目的是研究半群[公式:见文]的代数性质以及[公式:见文]的图论性质。我们研究了[Formula: see text]的连通性,并证明了[Formula: see text]的直径在连通的情况下不超过3。我们还得到了[公式:见文]的一个充要条件,使得[公式:见文]的团数是[公式:见文]的最小左理想数。进一步讨论了[公式:见文]的各种图不变量,即完备性、平面性、周长等。对于一个完全简单半群[公式:见文],我们研究了[公式:见文]的性质,包括它的独立数和匹配数。最后,我们得到了[公式:见文]的自同构群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信