Option-Pricing in Incomplete Markets: The Hedging Portfolio Plus a Risk Premium-Based Recursive Approach

Alfredo Ibáñez
{"title":"Option-Pricing in Incomplete Markets: The Hedging Portfolio Plus a Risk Premium-Based Recursive Approach","authors":"Alfredo Ibáñez","doi":"10.2139/ssrn.674622","DOIUrl":null,"url":null,"abstract":"Consider a non-spanned security $C_{T}$ in an incomplete market. We study the risk/return tradeoffs generated if this security is sold for an arbitrage-free price $\\hat{C_{0}}$ and then hedged. We consider recursive \"one-period optimal\" self-financing hedging strategies, a simple but tractable criterion. For continuous trading, diffusion processes, the one-period minimum variance portfolio is optimal. Let $C_{0}(0)$ be its price. Self-financing implies that the residual risk is equal to the sum of the one-period orthogonal hedging errors, $\\sum_{t\\leq T} Y_{t}(0) e^{r(T -t)}$. To compensate the residual risk, a risk premium $y_{t}\\Delta t$ is associated with every $Y_{t}$. Now let $C_{0}(y)$ be the price of the hedging portfolio, and $\\sum_{t\\leq T}(Y_{t}(y)+y_{t}\\Delta t)e^{r(T-t)}$ is the total residual risk. Although not the same, the one-period hedging errors $Y_{t}(0) and Y_{t}(y)$ are orthogonal to the trading assets, and are perfectly correlated. This implies that the spanned option payoff does not depend on y. Let $\\hat{C_{0}}-C_{0}(y)$. A main result follows. Any arbitrage-free price, $\\hat{C_{0}}$, is just the price of a hedging portfolio (such as in a complete market), $C_{0}(0)$, plus a premium, $\\hat{C_{0}}-C_{0}(0)$. That is, $C_{0}(0)$ is the price of the option's payoff which can be spanned, and $\\hat{C_{0}}-C_{0}(0)$ is the premium associated with the option's payoff which cannot be spanned (and yields a contingent risk premium of sum $y_{t}\\Delta$t$ e^{r(T-t)}$ at maturity). We study other applications of option-pricing theory as well.","PeriodicalId":9906,"journal":{"name":"CEPR: Financial Economics (Topic)","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2005-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEPR: Financial Economics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.674622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Consider a non-spanned security $C_{T}$ in an incomplete market. We study the risk/return tradeoffs generated if this security is sold for an arbitrage-free price $\hat{C_{0}}$ and then hedged. We consider recursive "one-period optimal" self-financing hedging strategies, a simple but tractable criterion. For continuous trading, diffusion processes, the one-period minimum variance portfolio is optimal. Let $C_{0}(0)$ be its price. Self-financing implies that the residual risk is equal to the sum of the one-period orthogonal hedging errors, $\sum_{t\leq T} Y_{t}(0) e^{r(T -t)}$. To compensate the residual risk, a risk premium $y_{t}\Delta t$ is associated with every $Y_{t}$. Now let $C_{0}(y)$ be the price of the hedging portfolio, and $\sum_{t\leq T}(Y_{t}(y)+y_{t}\Delta t)e^{r(T-t)}$ is the total residual risk. Although not the same, the one-period hedging errors $Y_{t}(0) and Y_{t}(y)$ are orthogonal to the trading assets, and are perfectly correlated. This implies that the spanned option payoff does not depend on y. Let $\hat{C_{0}}-C_{0}(y)$. A main result follows. Any arbitrage-free price, $\hat{C_{0}}$, is just the price of a hedging portfolio (such as in a complete market), $C_{0}(0)$, plus a premium, $\hat{C_{0}}-C_{0}(0)$. That is, $C_{0}(0)$ is the price of the option's payoff which can be spanned, and $\hat{C_{0}}-C_{0}(0)$ is the premium associated with the option's payoff which cannot be spanned (and yields a contingent risk premium of sum $y_{t}\Delta$t$ e^{r(T-t)}$ at maturity). We study other applications of option-pricing theory as well.
不完全市场中的期权定价:对冲组合和基于风险溢价的递归方法
考虑不完全市场中的非跨越证券$C_{T}$。我们研究产生的风险/回报权衡,如果这种证券以无套利价格$\hat{C_{0}}$出售,然后对冲。我们考虑递归的“单期最优”自融资对冲策略,这是一个简单但易于处理的准则。对于连续交易、扩散过程,单周期最小方差组合是最优的。让$C_{0}(0)$成为它的代价。自融资意味着剩余风险等于一期正交套期误差的总和$\sum_{t\leq T} Y_{t}(0) e^{r(T -t)}$。为了补偿剩余风险,风险溢价$y_{t}\Delta t$与每个$Y_{t}$相关联。现在设$C_{0}(y)$为对冲组合的价格,$\sum_{t\leq T}(Y_{t}(y)+y_{t}\Delta t)e^{r(T-t)}$为总剩余风险。虽然不相同,但一期对冲误差$Y_{t}(0) and Y_{t}(y)$与交易资产是正交的,并且是完全相关的。这意味着跨越期权的收益不依赖于y。设$\hat{C_{0}}-C_{0}(y)$。主要结果如下。任何无套利价格$\hat{C_{0}}$就是对冲投资组合的价格$C_{0}(0)$加上溢价$\hat{C_{0}}-C_{0}(0)$(比如在一个完整的市场中)。也就是说,$C_{0}(0)$是可以跨越的期权支付的价格,$\hat{C_{0}}-C_{0}(0)$是与不可跨越的期权支付相关的溢价(到期时产生的或有风险溢价为$y_{t}\Delta$ t $ e^{r(T-t)}$)。我们还研究了期权定价理论的其他应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信