{"title":"Implications of AI Bias in HRI: Risks (and Opportunities) when Interacting with a Biased Robot","authors":"Tom Hitron, Noa Morag Yaar, H. Erel","doi":"10.1145/3568162.3576977","DOIUrl":null,"url":null,"abstract":"Social robotic behavior is commonly designed using AI algorithms which are trained on human behavioral data. This training process may result in robotic behaviors that echo human biases and stereotypes. In this work, we evaluated whether an interaction with a biased robotic object can increase participants' stereotypical thinking. In the study, a gender-biased robot moderated debates between two participants (man and woman) in three conditions: (1) The robot's behavior matched gender stereotypes (Pro-Man); (2) The robot's behavior countered gender stereotypes (Pro-Woman); (3) The robot's behavior did not reflect gender stereotypes and did not counter them (No-Preference). Quantitative and qualitative measures indicated that the interaction with the robot in the Pro-Man condition increased participants' stereotypical thinking. In the No-Preference condition, stereotypical thinking was also observed but to a lesser extent. In contrast, when the robot displayed counter-biased behavior in the Pro-Woman condition, stereotypical thinking was eliminated. Our findings suggest that HRI designers must be conscious of AI algorithmic biases, as interactions with biased robots can reinforce implicit stereotypical thinking and exacerbate existing biases in society. On the other hand, counter-biased robotic behavior can be leveraged to support present efforts to address the negative impact of stereotypical thinking.","PeriodicalId":36515,"journal":{"name":"ACM Transactions on Human-Robot Interaction","volume":"64 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568162.3576977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 3
Abstract
Social robotic behavior is commonly designed using AI algorithms which are trained on human behavioral data. This training process may result in robotic behaviors that echo human biases and stereotypes. In this work, we evaluated whether an interaction with a biased robotic object can increase participants' stereotypical thinking. In the study, a gender-biased robot moderated debates between two participants (man and woman) in three conditions: (1) The robot's behavior matched gender stereotypes (Pro-Man); (2) The robot's behavior countered gender stereotypes (Pro-Woman); (3) The robot's behavior did not reflect gender stereotypes and did not counter them (No-Preference). Quantitative and qualitative measures indicated that the interaction with the robot in the Pro-Man condition increased participants' stereotypical thinking. In the No-Preference condition, stereotypical thinking was also observed but to a lesser extent. In contrast, when the robot displayed counter-biased behavior in the Pro-Woman condition, stereotypical thinking was eliminated. Our findings suggest that HRI designers must be conscious of AI algorithmic biases, as interactions with biased robots can reinforce implicit stereotypical thinking and exacerbate existing biases in society. On the other hand, counter-biased robotic behavior can be leveraged to support present efforts to address the negative impact of stereotypical thinking.
期刊介绍:
ACM Transactions on Human-Robot Interaction (THRI) is a prestigious Gold Open Access journal that aspires to lead the field of human-robot interaction as a top-tier, peer-reviewed, interdisciplinary publication. The journal prioritizes articles that significantly contribute to the current state of the art, enhance overall knowledge, have a broad appeal, and are accessible to a diverse audience. Submissions are expected to meet a high scholarly standard, and authors are encouraged to ensure their research is well-presented, advancing the understanding of human-robot interaction, adding cutting-edge or general insights to the field, or challenging current perspectives in this research domain.
THRI warmly invites well-crafted paper submissions from a variety of disciplines, encompassing robotics, computer science, engineering, design, and the behavioral and social sciences. The scholarly articles published in THRI may cover a range of topics such as the nature of human interactions with robots and robotic technologies, methods to enhance or enable novel forms of interaction, and the societal or organizational impacts of these interactions. The editorial team is also keen on receiving proposals for special issues that focus on specific technical challenges or that apply human-robot interaction research to further areas like social computing, consumer behavior, health, and education.