Distributed control framework for mapreduce cloud on cloud computing

Tzu-Chi Huang, Kuo-Chih Chu, Guo-Hao Huang, Yan-Chen Shen, C. Shieh
{"title":"Distributed control framework for mapreduce cloud on cloud computing","authors":"Tzu-Chi Huang, Kuo-Chih Chu, Guo-Hao Huang, Yan-Chen Shen, C. Shieh","doi":"10.1109/NOMS.2018.8406180","DOIUrl":null,"url":null,"abstract":"A MapReduce cloud becomes a key to the success of cloud computing today. However, a MapReduce cloud uses a single Master node as the brain to manage tasks distributed over Slave nodes for controlling the entire progress of the application execution. Accordingly, a MapReduce cloud easily overloads the Master node with reports sent from Slave nodes at run time to harm performance. Besides, a MapReduce cloud makes the Master node a single failure point to suspend the application execution when the Master node cannot work. A MapReduce cloud can use the Distributed Control Framework (DCF) proposed in this paper to improve both performance and fault tolerance, because DCF shifts most works of a Master node to a DCF Master Agent coexisting in each Slave node and allows Slave nodes to join or leave a cloud at run time without interrupting the application execution. According to observations on experiments with various applications in this paper, a MapReduce cloud can use DCF to have better performance and fault tolerance in comparison to a native MapReduce cloud.","PeriodicalId":19331,"journal":{"name":"NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium","volume":"34 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2018.8406180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A MapReduce cloud becomes a key to the success of cloud computing today. However, a MapReduce cloud uses a single Master node as the brain to manage tasks distributed over Slave nodes for controlling the entire progress of the application execution. Accordingly, a MapReduce cloud easily overloads the Master node with reports sent from Slave nodes at run time to harm performance. Besides, a MapReduce cloud makes the Master node a single failure point to suspend the application execution when the Master node cannot work. A MapReduce cloud can use the Distributed Control Framework (DCF) proposed in this paper to improve both performance and fault tolerance, because DCF shifts most works of a Master node to a DCF Master Agent coexisting in each Slave node and allows Slave nodes to join or leave a cloud at run time without interrupting the application execution. According to observations on experiments with various applications in this paper, a MapReduce cloud can use DCF to have better performance and fault tolerance in comparison to a native MapReduce cloud.
基于云计算的mapreduce云分布式控制框架
MapReduce云成为当今云计算成功的关键。然而,MapReduce云使用单个Master节点作为大脑来管理分布在Slave节点上的任务,以控制应用程序执行的整个进程。因此,MapReduce云在运行时很容易让从节点发送的报告使主节点过载,从而影响性能。此外,MapReduce云使Master节点成为单个故障点,在Master节点无法工作时暂停应用程序的执行。MapReduce云可以使用本文提出的分布式控制框架(DCF)来提高性能和容错性,因为DCF将主节点的大部分工作转移到每个从节点中共存的DCF主代理上,并允许从节点在运行时加入或离开云,而不会中断应用程序的执行。根据本文对各种应用的实验观察,与原生MapReduce云相比,使用DCF的MapReduce云具有更好的性能和容错能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信