A Numerical Approach for Singularly Perturbed Nonlinear Delay Differential Equations Using a Trigonometric Spline

IF 0.9 Q3 MATHEMATICS, APPLIED
M. Lalu, K. Phaneendra
{"title":"A Numerical Approach for Singularly Perturbed Nonlinear Delay Differential Equations Using a Trigonometric Spline","authors":"M. Lalu,&nbsp;K. Phaneendra","doi":"10.1155/2022/8338661","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this paper, a computational procedure for solving singularly perturbed nonlinear delay differentiation equations (SPNDDEs) is proposed. Initially, the SPNDDE is reduced into a series of singularly perturbed linear delay differential equations (SPLDDEs) using the quasilinearization technique. A trigonometric spline approach is suggested to solve the sequence of SPLDDEs. Convergence of the method is addressed. The efficiency and applicability of the proposed method are demonstrated by the numerical examples.</p>\n </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2022 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/8338661","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2022/8338661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a computational procedure for solving singularly perturbed nonlinear delay differentiation equations (SPNDDEs) is proposed. Initially, the SPNDDE is reduced into a series of singularly perturbed linear delay differential equations (SPLDDEs) using the quasilinearization technique. A trigonometric spline approach is suggested to solve the sequence of SPLDDEs. Convergence of the method is addressed. The efficiency and applicability of the proposed method are demonstrated by the numerical examples.

Abstract Image

奇异摄动非线性时滞微分方程的三角样条数值解法
本文给出了求解奇异摄动非线性时滞微分方程的一种计算方法。首先,利用拟线性化技术将奇异摄动时滞微分方程分解为一系列奇异摄动线性时滞微分方程。提出了一种三角样条法求解SPLDDEs序列。讨论了该方法的收敛性。数值算例验证了该方法的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信