I. Syaichurrozi, S. Sarto, W. B. Sediawan, M. Hidayat
{"title":"Effect of Fe Addition on Anaerobic Digestion Process in Treating Vinasse: Experimental and Kinetic Studies","authors":"I. Syaichurrozi, S. Sarto, W. B. Sediawan, M. Hidayat","doi":"10.3311/ppch.20611","DOIUrl":null,"url":null,"abstract":"Vinasse is a continuously resulting waste by a bioethanol industry with a high chemical oxygen demand (COD) concentration and a large volume. Anaerobic digestion (AD) is the best method to treat vinasse because it converts COD to biogas, so the biogas can support the Indonesia's primary energy need. The goal of this study was to study the effect of Fe concentration on the AD process in treating the vinasse. The Fe concentration was varied to 0.06, 0.29, 0.64, 0.99 g/L. The results showed that increasing the Fe concentration from 0.06 to 0.29 g/L intensified the biogas yield by 360% (from 10.8 to 49.6 mL/g COD). However, further increasing the Fe concentration to 0.99 g/L decreased the biogas yield by 37.8% (from 10.8 to 6.7 mL/g COD). The Fe significantly affected the methane formation stage, but not the acid formation stage. A mechanistic model was built and successfully applied to predict the AD process. Based on the simulation results, Fe concentration of 0.29 g/L resulted in the highest values of YVFA/X2 (yield of volatile fatty acids (VFAs) consumption per biomass of X2 ), μm,2 (specific growth rate for X2 ), fCH4 (composition of methane in biogas) and the lowest values of Ks,VFA (affinity coefficient in VFAs consumption), kd2 (death rate constant for X2 ), kVFA (consumption rate of VFAs for maintenance). The addition of Fe until 0.29 g/L was recommended to increase the quantity and quality (methane content reached 53.4%) of biogas production.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppch.20611","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Vinasse is a continuously resulting waste by a bioethanol industry with a high chemical oxygen demand (COD) concentration and a large volume. Anaerobic digestion (AD) is the best method to treat vinasse because it converts COD to biogas, so the biogas can support the Indonesia's primary energy need. The goal of this study was to study the effect of Fe concentration on the AD process in treating the vinasse. The Fe concentration was varied to 0.06, 0.29, 0.64, 0.99 g/L. The results showed that increasing the Fe concentration from 0.06 to 0.29 g/L intensified the biogas yield by 360% (from 10.8 to 49.6 mL/g COD). However, further increasing the Fe concentration to 0.99 g/L decreased the biogas yield by 37.8% (from 10.8 to 6.7 mL/g COD). The Fe significantly affected the methane formation stage, but not the acid formation stage. A mechanistic model was built and successfully applied to predict the AD process. Based on the simulation results, Fe concentration of 0.29 g/L resulted in the highest values of YVFA/X2 (yield of volatile fatty acids (VFAs) consumption per biomass of X2 ), μm,2 (specific growth rate for X2 ), fCH4 (composition of methane in biogas) and the lowest values of Ks,VFA (affinity coefficient in VFAs consumption), kd2 (death rate constant for X2 ), kVFA (consumption rate of VFAs for maintenance). The addition of Fe until 0.29 g/L was recommended to increase the quantity and quality (methane content reached 53.4%) of biogas production.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.