Improving Prediction of Fracture Distribution Using Microseismic Data and Acoustic Logging Measurements

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yilin Liu, Guozhong Gao
{"title":"Improving Prediction of Fracture Distribution Using Microseismic Data and Acoustic Logging Measurements","authors":"Yilin Liu, Guozhong Gao","doi":"10.2118/214677-pa","DOIUrl":null,"url":null,"abstract":"\n The complex fracture network from hydraulic fracturing can significantly improve oilwell productivity, so it is widely used in the field of unconventional reservoir development. However, accurate evaluation of the fracture spatial distribution remains a challenge. As a result, how to combine a variety of data to avoid data islands and identify and predict the space of fracture zone is of great importance. In this paper, we present a method and workflow based on the microseismic (MS) data combined with shear wave velocity data to estimate the physical parameters of subsurface media and improve the description and prediction accuracy for hydraulic fractures. The method analyzes MS events to construct the fracture spatial distribution and uses acoustic logging measurements to correct the magnitude of MS events and enhance the resolution. The corrected MS magnitude is mapped to the MS event space for Kriging interpolation analysis to predict the improved spatial distribution of fractures, which is available in the format of a 3D cloud image.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/214677-pa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The complex fracture network from hydraulic fracturing can significantly improve oilwell productivity, so it is widely used in the field of unconventional reservoir development. However, accurate evaluation of the fracture spatial distribution remains a challenge. As a result, how to combine a variety of data to avoid data islands and identify and predict the space of fracture zone is of great importance. In this paper, we present a method and workflow based on the microseismic (MS) data combined with shear wave velocity data to estimate the physical parameters of subsurface media and improve the description and prediction accuracy for hydraulic fractures. The method analyzes MS events to construct the fracture spatial distribution and uses acoustic logging measurements to correct the magnitude of MS events and enhance the resolution. The corrected MS magnitude is mapped to the MS event space for Kriging interpolation analysis to predict the improved spatial distribution of fractures, which is available in the format of a 3D cloud image.
利用微震资料和声波测井改进裂缝分布预测
水力压裂形成的复杂裂缝网络能显著提高油井产能,因此在非常规油藏开发领域得到了广泛应用。然而,准确评估裂缝的空间分布仍然是一个挑战。因此,如何结合多种数据避免数据孤岛,识别和预测断裂带空间具有重要意义。本文提出了一种基于微震数据结合横波速度数据估算地下介质物性参数的方法和工作流程,提高了水力裂缝的描述和预测精度。该方法通过分析质谱事件构建裂缝空间分布,利用声波测井校正质谱事件震级,提高裂缝分辨率。校正后的MS震级被映射到MS事件空间,用于Kriging插值分析,以预测改进后的裂缝空间分布,并以3D云图的形式提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信