{"title":"Parallel 3D deterministic particle transport on Intel MIC architecture","authors":"Qinglin Wang, Zuocheng Xing, Jie Liu, X. Qiang, Chunye Gong, Jiang Jiang","doi":"10.1109/HPCSim.2014.6903685","DOIUrl":null,"url":null,"abstract":"Single-node computation speed is essential in large-scale parallel solutions of particle transport problems. The Intel Many Integrated Core (MIC) architecture supports more than 200 hardware threads as well as 512-bit double precision float-point vector operations. In this paper, we use the native model of MIC in the parallelization of the simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The implementation adopts both hardware threads and vector units in MIC to efficiently exploit multi-level parallelism in the discrete ordinates method when keeping good data locality. Our optimized implementation is verified on target MIC and can provide up to 1.99 times speedup based on the original MPI code on Intel Xeon E5-2660 CPU when flux fixup is off. Compared with the prior on NVIDIA Tesla M2050 GPU, the speedup of up to 1.23 times is obtained. In addition, the difference between the implementations on MIC and GPU is discussed as well.","PeriodicalId":6469,"journal":{"name":"2014 International Conference on High Performance Computing & Simulation (HPCS)","volume":"46 1","pages":"186-192"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2014.6903685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Single-node computation speed is essential in large-scale parallel solutions of particle transport problems. The Intel Many Integrated Core (MIC) architecture supports more than 200 hardware threads as well as 512-bit double precision float-point vector operations. In this paper, we use the native model of MIC in the parallelization of the simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The implementation adopts both hardware threads and vector units in MIC to efficiently exploit multi-level parallelism in the discrete ordinates method when keeping good data locality. Our optimized implementation is verified on target MIC and can provide up to 1.99 times speedup based on the original MPI code on Intel Xeon E5-2660 CPU when flux fixup is off. Compared with the prior on NVIDIA Tesla M2050 GPU, the speedup of up to 1.23 times is obtained. In addition, the difference between the implementations on MIC and GPU is discussed as well.