{"title":"Comparison of four different immunoassays and a rapid isotope-dilution liquid chromatography-tandem mass spectrometry assay for serum folate","authors":"Lizi Jin, You-li Lu, Xilian Yi, Meiwei Zhang, Jiangtao Zhang, Weiyan Zhou, J. Zeng, Tianjiao Zhang, Chuanbao Zhang","doi":"10.1515/cclm-2021-1283","DOIUrl":null,"url":null,"abstract":"Abstract Objectives Accurate measurement of serum folate is essential for the diagnosis and management of various disorders. This study aims to investigate the between-method differences of four immunoassays and a rapid isotope-dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) method. Methods Roche Cobas (USA), Abbott Alinity i2000 (USA), Beckman Coulter Access (USA), Mindray CL-6000i (China), and the ID-LC-MS/MS method were compared using 46 human serum samples. The results were analysed by Passing–Bablok regressions and Bland–Altman plots. A bias of 13.31% based on biological variation was used as the bias criterion. Results All the within-run and total coefficients of variation (CVs) met the specification. The folate concentrations determined by all the assays were significantly different (p=0.0028). All assays had correlation coefficients over 0.97 with each other. The 95% confidence intervals (CIs) for the slope seldom contained 1 and few 95% CIs for the intercept contained 0 in the regression equations. Compared to ID-LC-MS/MS, the biases of all assays ranged from −20.91 to 13.56 nmol/L, and the mean relative biases ranged from −9.85 to 40.33%. The predicted mean relative biases at the medical decision levels rarely met the criterion. Conclusions Assays for serum folate had good correlations with each other but lacked good agreement. The accuracy and consistency of assays for serum folate should be measured and assessed routinely. Standardization work to improve the accuracy of serum folate assays, such as the extension of traceability to reference methods or materials, calibration standardization efforts, and assay-adjusted cut-offs should be promoted.","PeriodicalId":10388,"journal":{"name":"Clinical Chemistry and Laboratory Medicine (CCLM)","volume":"110 1","pages":"1393 - 1402"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Chemistry and Laboratory Medicine (CCLM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cclm-2021-1283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Objectives Accurate measurement of serum folate is essential for the diagnosis and management of various disorders. This study aims to investigate the between-method differences of four immunoassays and a rapid isotope-dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) method. Methods Roche Cobas (USA), Abbott Alinity i2000 (USA), Beckman Coulter Access (USA), Mindray CL-6000i (China), and the ID-LC-MS/MS method were compared using 46 human serum samples. The results were analysed by Passing–Bablok regressions and Bland–Altman plots. A bias of 13.31% based on biological variation was used as the bias criterion. Results All the within-run and total coefficients of variation (CVs) met the specification. The folate concentrations determined by all the assays were significantly different (p=0.0028). All assays had correlation coefficients over 0.97 with each other. The 95% confidence intervals (CIs) for the slope seldom contained 1 and few 95% CIs for the intercept contained 0 in the regression equations. Compared to ID-LC-MS/MS, the biases of all assays ranged from −20.91 to 13.56 nmol/L, and the mean relative biases ranged from −9.85 to 40.33%. The predicted mean relative biases at the medical decision levels rarely met the criterion. Conclusions Assays for serum folate had good correlations with each other but lacked good agreement. The accuracy and consistency of assays for serum folate should be measured and assessed routinely. Standardization work to improve the accuracy of serum folate assays, such as the extension of traceability to reference methods or materials, calibration standardization efforts, and assay-adjusted cut-offs should be promoted.