{"title":"Penilaian Kinerja Akurasi Metode Klasifikasi dalam Dataset Penerimaan Mahasiswa Baru Universitas XYZ","authors":"Indra Griha Tofik Isa, Febie Elfaladonna","doi":"10.26418/jp.v8i2.54316","DOIUrl":null,"url":null,"abstract":"Universitas XYZ merupakan salah satu Perguruan Tinggi yang berlokasi di Kota Palembang yang melakukan kegiatan Penerimaan Mahasiswa Baru (PMB) untuk menjaring calon mahasiswa. Data PMB dari tahun ke tahun belum digunakan secara optimal dalam menghasilkan pengetahuan yang memberikan nilai manfaat bagi pengguna, sehingga diperlukan sebuah pemodelan data yang efisien dan tepat untuk menghasilkan akurasi data yang baik. Penelitian yang dilakukan bertujuan untuk menilai kinerja akurasi pemodelan yang terdapat dalam metode klasifikasi yang meliputi pemodelan k-NN, Decision Tree Classifier, Naive Bayes Classifier, Support Vector Machine (SVM) dan AdaBoost terhadap fitur dalam dataset Penerimaan Mahasiswa Baru (PMB) yang digunakan untuk memprediksi preferensi pemilihan program studi. 26 Fitur dalam dataset diamati hingga menghasilkan 6 fitur yang memiliki nilai korelasi yang tinggi untuk dilibatkan dalam penilaian kinerja akurasi, yang meliputi ‘Jurusan Sekolah’, ‘Penghasilan’, ‘Tahun Masuk’, ‘Tahun Lulus’, ‘Tipe Sekolah’ dan ‘Status Sekolah’ dengan data record sebanyak 2.704 data. Tahapan dilakukan menggunakan Data Life Cycle yang meliputi: (1) Business Understanding yang terdiri dari Penentuan Masalah, Tujuan Proyek, Solusi dari Perspektif Bisnis, dan Instrumen Pengukuran Keberhasilan; (2) Data Understanding dengan penelaahan data; (3) Data Preparation; (4) Modeling; (5) Evaluation. Hasil akhir menunjukkan bahwa k-NN classifier memiliki persentasi akurasi tertinggi sebesar 72.2% dan direkomendasikan dalam pemodelan preferensi program studi bagi calon mahasiswa baru di Universitas XYZ Kota Palembang.","PeriodicalId":31793,"journal":{"name":"JEPIN Jurnal Edukasi dan Penelitian Informatika","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEPIN Jurnal Edukasi dan Penelitian Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/jp.v8i2.54316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Universitas XYZ merupakan salah satu Perguruan Tinggi yang berlokasi di Kota Palembang yang melakukan kegiatan Penerimaan Mahasiswa Baru (PMB) untuk menjaring calon mahasiswa. Data PMB dari tahun ke tahun belum digunakan secara optimal dalam menghasilkan pengetahuan yang memberikan nilai manfaat bagi pengguna, sehingga diperlukan sebuah pemodelan data yang efisien dan tepat untuk menghasilkan akurasi data yang baik. Penelitian yang dilakukan bertujuan untuk menilai kinerja akurasi pemodelan yang terdapat dalam metode klasifikasi yang meliputi pemodelan k-NN, Decision Tree Classifier, Naive Bayes Classifier, Support Vector Machine (SVM) dan AdaBoost terhadap fitur dalam dataset Penerimaan Mahasiswa Baru (PMB) yang digunakan untuk memprediksi preferensi pemilihan program studi. 26 Fitur dalam dataset diamati hingga menghasilkan 6 fitur yang memiliki nilai korelasi yang tinggi untuk dilibatkan dalam penilaian kinerja akurasi, yang meliputi ‘Jurusan Sekolah’, ‘Penghasilan’, ‘Tahun Masuk’, ‘Tahun Lulus’, ‘Tipe Sekolah’ dan ‘Status Sekolah’ dengan data record sebanyak 2.704 data. Tahapan dilakukan menggunakan Data Life Cycle yang meliputi: (1) Business Understanding yang terdiri dari Penentuan Masalah, Tujuan Proyek, Solusi dari Perspektif Bisnis, dan Instrumen Pengukuran Keberhasilan; (2) Data Understanding dengan penelaahan data; (3) Data Preparation; (4) Modeling; (5) Evaluation. Hasil akhir menunjukkan bahwa k-NN classifier memiliki persentasi akurasi tertinggi sebesar 72.2% dan direkomendasikan dalam pemodelan preferensi program studi bagi calon mahasiswa baru di Universitas XYZ Kota Palembang.
XYZ大学是位于帕伦邦的一所大学,为未来的学生举办招生活动(PMB)。多年来,PMB数据还没有被最恰当地用于产生给用户带来好处的知识,因此需要一个有效的、精确的数据建构来产生良好的数据准确性。这项研究的目的是评估k-NN建模、Decision Tree Classifier、Naive Bayes Classifier、支持矢量机(SVM)和用于预测研究程序选择偏好的新数据中所包含的建模性能。数据集中的26个功能被观察到产生6个具有高相关性的绩效评估,其中包括“学校专业”、“收入”、“入学年份”、“毕业年份”、“学校类型”和“学校状态”,记录多达2,704个数据。使用生命周期数据进行的步骤包括:(1)商业理解包括确定问题、项目目标、商业解决方案和成功测量工具;(2)数据通过研究数据了解;(3)准备数据;(4)模特;(5)调查员。最后的结果表明,k-NN的最低准确率为72.2%,并推荐为帕伦邦市希茨大学(XYZ university of Palembang)初入学生的首选学习计划进行模型模型。