SQL-SA for big data discovery polymorphic and parallelizable SQL user-defined scalar and aggregate infrastructure in Teradata Aster 6.20

Xin Tang, R. Wehrmeister, J. Shau, Abhirup Chakraborty, Daley Alex, A. A. Omari, Feven Atnafu, Jeff Davis, Litao Deng, Deepak Jaiswal, C. Keswani, Yafeng Lu, Chao Ren, T. Reyes, Kashif Siddiqui, David E. Simmen, D. Vidhani, Ling Wang, Shuai Yang, Daniel Yu
{"title":"SQL-SA for big data discovery polymorphic and parallelizable SQL user-defined scalar and aggregate infrastructure in Teradata Aster 6.20","authors":"Xin Tang, R. Wehrmeister, J. Shau, Abhirup Chakraborty, Daley Alex, A. A. Omari, Feven Atnafu, Jeff Davis, Litao Deng, Deepak Jaiswal, C. Keswani, Yafeng Lu, Chao Ren, T. Reyes, Kashif Siddiqui, David E. Simmen, D. Vidhani, Ling Wang, Shuai Yang, Daniel Yu","doi":"10.1109/ICDE.2016.7498323","DOIUrl":null,"url":null,"abstract":"There is increasing demand to integrate big data analytic systems using SQL. Given the vast ecosystem of SQL applications, enabling SQL capabilities allows big data platforms to expose their analytic potential to a wide variety of end users, accelerating discovery processes and providing significant business value. Most existing big data frameworks are based on one particular programming model such as MapReduce or Graph. However, data scientists are often forced to manually create adhoc data pipelines to connect various big data tools and platforms to serve their analytic needs. When the analytic tasks change, these data pipelines may be costly to modify and maintain. In this paper we present SQL-SA, a polymorphic and parallelizable SQL scalar and aggregate infrastructure in Aster 6.20. This infrastructure extends Aster 6's MapReduce and Graph capabilities to support polymorphic user-defined scalar and aggregate functions using flexible SQL syntax. The implementation enhances main Aster components including query syntax, API, planning and execution extensively. Integrating these new user-defined scalar and aggregate functions with Aster MapReduce and Graph functions, Aster 6.20 enables data scientists to integrate diverse programming models in a single SQL statement. The statement is automatically converted to an optimal data pipeline and executed in parallel. Using a real world business problem and data, Aster 6.20 demonstrates a significant performance advantage (25%+) over Hadoop Pig and Hive.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"92 1","pages":"1182-1193"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

There is increasing demand to integrate big data analytic systems using SQL. Given the vast ecosystem of SQL applications, enabling SQL capabilities allows big data platforms to expose their analytic potential to a wide variety of end users, accelerating discovery processes and providing significant business value. Most existing big data frameworks are based on one particular programming model such as MapReduce or Graph. However, data scientists are often forced to manually create adhoc data pipelines to connect various big data tools and platforms to serve their analytic needs. When the analytic tasks change, these data pipelines may be costly to modify and maintain. In this paper we present SQL-SA, a polymorphic and parallelizable SQL scalar and aggregate infrastructure in Aster 6.20. This infrastructure extends Aster 6's MapReduce and Graph capabilities to support polymorphic user-defined scalar and aggregate functions using flexible SQL syntax. The implementation enhances main Aster components including query syntax, API, planning and execution extensively. Integrating these new user-defined scalar and aggregate functions with Aster MapReduce and Graph functions, Aster 6.20 enables data scientists to integrate diverse programming models in a single SQL statement. The statement is automatically converted to an optimal data pipeline and executed in parallel. Using a real world business problem and data, Aster 6.20 demonstrates a significant performance advantage (25%+) over Hadoop Pig and Hive.
SQL- sa用于大数据发现Teradata Aster 6.20中的多态和并行SQL用户定义的标量和聚合基础设施
使用SQL集成大数据分析系统的需求越来越大。考虑到SQL应用程序的庞大生态系统,启用SQL功能可以让大数据平台向各种各样的最终用户展示其分析潜力,从而加速发现过程并提供重要的业务价值。大多数现有的大数据框架都是基于一个特定的编程模型,如MapReduce或Graph。然而,数据科学家经常被迫手动创建专门的数据管道来连接各种大数据工具和平台,以满足他们的分析需求。当分析任务发生变化时,修改和维护这些数据管道的成本可能很高。在本文中,我们提出了SQL- sa,这是Aster 6.20中的一个多态和可并行的SQL标量和聚合基础结构。该基础架构扩展了Aster 6的MapReduce和Graph功能,使用灵活的SQL语法支持多态用户定义的标量和聚合函数。该实现广泛地增强了主要的Aster组件,包括查询语法、API、规划和执行。Aster 6.20将这些新的用户定义标量和聚合函数与Aster MapReduce和Graph函数集成在一起,使数据科学家能够在单个SQL语句中集成不同的编程模型。语句自动转换为最佳数据管道并并行执行。使用真实世界的业务问题和数据,Aster 6.20比Hadoop Pig和Hive表现出显著的性能优势(25%以上)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信