{"title":"Motion Trajectory Segmentation via Minimum Cost Multicuts","authors":"M. Keuper, Bjoern Andres, T. Brox","doi":"10.1109/ICCV.2015.374","DOIUrl":null,"url":null,"abstract":"For the segmentation of moving objects in videos, the analysis of long-term point trajectories has been very popular recently. In this paper, we formulate the segmentation of a video sequence based on point trajectories as a minimum cost multicut problem. Unlike the commonly used spectral clustering formulation, the minimum cost multicut formulation gives natural rise to optimize not only for a cluster assignment but also for the number of clusters while allowing for varying cluster sizes. In this setup, we provide a method to create a long-term point trajectory graph with attractive and repulsive binary terms and outperform state-of-the-art methods based on spectral clustering on the FBMS-59 dataset and on the motion subtask of the VSB100 dataset.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"16 1","pages":"3271-3279"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"188","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 188
Abstract
For the segmentation of moving objects in videos, the analysis of long-term point trajectories has been very popular recently. In this paper, we formulate the segmentation of a video sequence based on point trajectories as a minimum cost multicut problem. Unlike the commonly used spectral clustering formulation, the minimum cost multicut formulation gives natural rise to optimize not only for a cluster assignment but also for the number of clusters while allowing for varying cluster sizes. In this setup, we provide a method to create a long-term point trajectory graph with attractive and repulsive binary terms and outperform state-of-the-art methods based on spectral clustering on the FBMS-59 dataset and on the motion subtask of the VSB100 dataset.