Query-Task Mapping

Michael Völske, Ehsan Fatehifar, Benno Stein, Matthias Hagen
{"title":"Query-Task Mapping","authors":"Michael Völske, Ehsan Fatehifar, Benno Stein, Matthias Hagen","doi":"10.1145/3331184.3331286","DOIUrl":null,"url":null,"abstract":"Several recent task-based search studies aim at splitting query logs into sets of queries for the same task or information need. We address the natural next step: mapping a currently submitted query to an appropriate task in an already task-split log. This query-task mapping can, for instance, enhance query suggestions---rendering efficiency of the mapping, besides accuracy, a key objective. Our main contributions are three large benchmark datasets and preliminary experiments with four query-task mapping approaches: (1) a Trie-based approach, (2) MinHash~LSH, (3) word movers distance in a Word2Vec setup, and (4) an inverted index-based approach. The experiments show that the fast and accurate inverted index-based method forms a strong baseline.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Several recent task-based search studies aim at splitting query logs into sets of queries for the same task or information need. We address the natural next step: mapping a currently submitted query to an appropriate task in an already task-split log. This query-task mapping can, for instance, enhance query suggestions---rendering efficiency of the mapping, besides accuracy, a key objective. Our main contributions are three large benchmark datasets and preliminary experiments with four query-task mapping approaches: (1) a Trie-based approach, (2) MinHash~LSH, (3) word movers distance in a Word2Vec setup, and (4) an inverted index-based approach. The experiments show that the fast and accurate inverted index-based method forms a strong baseline.
Query-Task映射
最近一些基于任务的搜索研究旨在将查询日志拆分为同一任务或信息需求的查询集。我们解决了自然的下一步:将当前提交的查询映射到已经任务分割日志中的适当任务。例如,这种查询任务映射可以增强查询建议——映射的呈现效率,除了准确性之外,这是一个关键目标。我们的主要贡献是三个大型基准数据集和四种查询任务映射方法的初步实验:(1)基于trie的方法,(2)MinHash~LSH, (3) Word2Vec设置中的字移动距离,以及(4)基于倒排索引的方法。实验表明,基于倒排索引的方法快速准确地形成了一个强基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信