A. Rebrov, M. Bobrov, A. Emelyanov, N. Timoshenko, M. Hrebtov, I. Yudin
{"title":"EXPERIENCE IN THE SYNTHESIS OF DIAMOND FROM A SUPERSONIC MICROWAVE PLASMA JET","authors":"A. Rebrov, M. Bobrov, A. Emelyanov, N. Timoshenko, M. Hrebtov, I. Yudin","doi":"10.1615/interfacphenomheattransfer.2019031315","DOIUrl":null,"url":null,"abstract":"In this paper, the traditional method of microwave plasma generation is used in combination with the formation of a high-velocity plasma flow from a resonant chamber into an evacuated deposition chamber. In the experiments, a modernized magnetron with power up to 3 kW at a frequency of 2.45 GHz is used. The calculations of the microwave plasma formation process make, in practice, it possible to estimate the optimal geometry of the discharge chamber for an acceptable distribution of the electromagnetic field in the discharge region. The gas-dynamic calculations give an estimate of the approximate content of atomic hydrogen at the deposition surface. The results of the work determine ways for further research on the synthesis of diamond from high-speed microwave plasma jets.","PeriodicalId":44077,"journal":{"name":"Interfacial Phenomena and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfacial Phenomena and Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/interfacphenomheattransfer.2019031315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 11
Abstract
In this paper, the traditional method of microwave plasma generation is used in combination with the formation of a high-velocity plasma flow from a resonant chamber into an evacuated deposition chamber. In the experiments, a modernized magnetron with power up to 3 kW at a frequency of 2.45 GHz is used. The calculations of the microwave plasma formation process make, in practice, it possible to estimate the optimal geometry of the discharge chamber for an acceptable distribution of the electromagnetic field in the discharge region. The gas-dynamic calculations give an estimate of the approximate content of atomic hydrogen at the deposition surface. The results of the work determine ways for further research on the synthesis of diamond from high-speed microwave plasma jets.
期刊介绍:
Interfacial Phenomena and Heat Transfer aims to serve as a forum to advance understanding of fundamental and applied areas on interfacial phenomena, fluid flow, and heat transfer through interdisciplinary research. The special feature of the Journal is to highlight multi-scale phenomena involved in physical and/or chemical behaviors in the context of both classical and new unsolved problems of thermal physics, fluid mechanics, and interfacial phenomena. This goal is fulfilled by publishing novel research on experimental, theoretical and computational methods, assigning priority to comprehensive works covering at least two of the above three approaches. The scope of the Journal covers interdisciplinary areas of physics of fluids, heat and mass transfer, physical chemistry and engineering in macro-, meso-, micro-, and nano-scale. As such review papers, full-length articles and short communications are sought on the following areas: intense heat and mass transfer systems; flows in channels and complex fluid systems; physics of contact line, wetting and thermocapillary flows; instabilities and flow patterns; two-phase systems behavior including films, drops, rivulets, spray, jets, and bubbles; phase change phenomena such as boiling, evaporation, condensation and solidification; multi-scaled textured, soft or heterogeneous surfaces; and gravity dependent phenomena, e.g. processes in micro- and hyper-gravity. The Journal may also consider significant contributions related to the development of innovative experimental techniques, and instrumentation demonstrating advancement of science in the focus areas of this journal.