{"title":"Multi-objective evolutionary methods for channel selection in Brain-Computer Interfaces: Some preliminary experimental results","authors":"B. A. S. Hasan, J. Q. Gan, Qingfu Zhang","doi":"10.1109/CEC.2010.5586411","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative study among three evolutionary and search based methods to solve the problem of channel selection for Brain-Computer Interface (BCI) systems. Multi-Objective Particle Swarm Optimization (MOPSO) method is compared to Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) and single objective Sequential Floating Forward Search (SFFS) method. The methods are tested on the first data set for BCI-Competition IV. The results show the usefulness of the multi-objective evolutionary methods in achieving accuracy results similar to the extensive search method with fewer channels and less computational time.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"21 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
This paper presents a comparative study among three evolutionary and search based methods to solve the problem of channel selection for Brain-Computer Interface (BCI) systems. Multi-Objective Particle Swarm Optimization (MOPSO) method is compared to Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) and single objective Sequential Floating Forward Search (SFFS) method. The methods are tested on the first data set for BCI-Competition IV. The results show the usefulness of the multi-objective evolutionary methods in achieving accuracy results similar to the extensive search method with fewer channels and less computational time.