On the conformability of regular line graphs

Luerbio Faria, Mauro Nigro, Diana Sasaki
{"title":"On the conformability of regular line graphs","authors":"Luerbio Faria, Mauro Nigro, Diana Sasaki","doi":"10.1051/ro/2023140","DOIUrl":null,"url":null,"abstract":"Let $G=(V,E)$ be a graph and the \\emph{deficiency of $G$}  be $def(G)=\\sum_{v \\in V(G)} (\\Delta(G)-d_{G}(v))$, where $d_{G}(v)$ is the degree of a vertex $v$ in $G$. A vertex coloring $\\varphi :V(G)\\to \\{1,2,...,\\Delta(G)+1\\}$ is called \\emph{conformable} if the number of color classes (including empty color classes) of parity different from that of $|V(G)|$ is at most $def(G)$. A general characterization for conformable graphs is unknown. Conformability plays a key role in the total chromatic number theory. It is known that if $G$ is \\textit{Type~1}, then $G$ is conformable. In this paper, we prove that if $G$ is $k$-regular and \\textit{Class~1}, then $L(G)$ is conformable. As an application of this statement we establish that the line graph of complete graph $L(K_n)$ is conformable, which is a positive evidence towards the Vignesh et al.'s  conjecture that $L(K_n)$ is \\textit{Type~1}.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":"24 1","pages":"2527-2536"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $G=(V,E)$ be a graph and the \emph{deficiency of $G$}  be $def(G)=\sum_{v \in V(G)} (\Delta(G)-d_{G}(v))$, where $d_{G}(v)$ is the degree of a vertex $v$ in $G$. A vertex coloring $\varphi :V(G)\to \{1,2,...,\Delta(G)+1\}$ is called \emph{conformable} if the number of color classes (including empty color classes) of parity different from that of $|V(G)|$ is at most $def(G)$. A general characterization for conformable graphs is unknown. Conformability plays a key role in the total chromatic number theory. It is known that if $G$ is \textit{Type~1}, then $G$ is conformable. In this paper, we prove that if $G$ is $k$-regular and \textit{Class~1}, then $L(G)$ is conformable. As an application of this statement we establish that the line graph of complete graph $L(K_n)$ is conformable, which is a positive evidence towards the Vignesh et al.'s  conjecture that $L(K_n)$ is \textit{Type~1}.
正则线形图的符合性
设$G=(V,E)$是一个图,\emph{$G$}\emph{的}\emph{不足}点是$def(G)=\sum_{v \in V(G)} (\Delta(G)-d_{G}(v))$,其中$d_{G}(v)$是$G$中顶点$v$的度数。如果与$|V(G)|$的奇偶性不同的色类(包括空色类)的数量\emph{不}超过$def(G)$,则称为顶点着色$\varphi :V(G)\to \{1,2,...,\Delta(G)+1\}$。可合图的一般性质是未知的。顺应性在全色数理论中起着关键的作用。众所周知,如果$G$是\textit{1型},那么$G$是符合型的。本文证明了如果$G$是$k$ -正则且是第\textit{1类},则$L(G)$是相容的。作为这一表述的应用,我们建立了完全图$L(K_n)$的线形符合,这是对Vignesh et al.猜想$L(K_n)$是\textit{Type 1}的积极证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信