Natural Evolutionary Strategies for Variational Quantum Computation

A. Anand, M. Degroote, Alán Aspuru-Guzik
{"title":"Natural Evolutionary Strategies for Variational Quantum Computation","authors":"A. Anand, M. Degroote, Alán Aspuru-Guzik","doi":"10.1088/2632-2153/ABF3AC","DOIUrl":null,"url":null,"abstract":"Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the optimization of randomly-initialized parametrized quantum circuits (PQCs) in the region of vanishing gradients. We show that using the NES gradient estimator the exponential decrease in variance can be alleviated. We implement two specific approaches, the exponential and separable natural evolutionary strategies, for parameter optimization of PQCs and compare them against standard gradient descent. We apply them to two different problems of ground state energy estimation using variational quantum eigensolver (VQE) and state preparation with circuits of varying depth and length. We also introduce batch optimization for circuits with larger depth to extend the use of evolutionary strategies to a larger number of parameters. We achieve accuracy comparable to state-of-the-art optimization techniques in all the above cases with a lower number of circuit evaluations. Our empirical results indicate that one can use NES as a hybrid tool in tandem with other gradient-based methods for optimization of deep quantum circuits in regions with vanishing gradients.","PeriodicalId":18148,"journal":{"name":"Mach. Learn. Sci. Technol.","volume":"40 1","pages":"45012"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mach. Learn. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ABF3AC","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the optimization of randomly-initialized parametrized quantum circuits (PQCs) in the region of vanishing gradients. We show that using the NES gradient estimator the exponential decrease in variance can be alleviated. We implement two specific approaches, the exponential and separable natural evolutionary strategies, for parameter optimization of PQCs and compare them against standard gradient descent. We apply them to two different problems of ground state energy estimation using variational quantum eigensolver (VQE) and state preparation with circuits of varying depth and length. We also introduce batch optimization for circuits with larger depth to extend the use of evolutionary strategies to a larger number of parameters. We achieve accuracy comparable to state-of-the-art optimization techniques in all the above cases with a lower number of circuit evaluations. Our empirical results indicate that one can use NES as a hybrid tool in tandem with other gradient-based methods for optimization of deep quantum circuits in regions with vanishing gradients.
变分量子计算的自然进化策略
自然进化策略(NES)是一类无梯度黑盒优化算法。本研究说明了它们在梯度消失区域的随机初始化参数化量子电路(pqc)优化中的应用。我们证明使用NES梯度估计器可以缓解方差的指数下降。我们实现了指数和可分自然进化两种特定的方法来优化pqc的参数,并将它们与标准梯度下降法进行了比较。我们将它们应用于两个不同的问题,即利用变分量子特征解算器(VQE)估计基态能量和用变深度和变长度电路制备状态。我们还引入了更大深度电路的批量优化,以将进化策略的使用扩展到更多的参数。在上述所有情况下,我们以更少的电路评估次数实现了与最先进的优化技术相当的精度。我们的经验结果表明,人们可以将NES作为混合工具与其他基于梯度的方法串联使用,以优化梯度消失区域中的深度量子电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信