{"title":"Influence of parameters inhomogeneity on the existence of chimera states in a ring of nonlocally coupled maps","authors":"V. Nechaev, E. Rybalova, G. Strelkova","doi":"10.18500/0869-6632-2021-29-6-943-952","DOIUrl":null,"url":null,"abstract":"The aim of the research is to study the influence of inhomogeneity in a control parameter of all partial elements in a ring of nonlocally coupled chaotic maps on the possibility of observing chimera states in the system and to compare the changes in regions of chimera realization using different methods of introducing the inhomogeneity. Methods. In this paper, snapshots of the system dynamics are constructed for various values of the parameters, as well as spatial distributions of cross-correlation coefficient values, which enable us to determine the regime observed in the system for these parameters. To improve the accuracy of the obtained results, the numerical studies are carried out for fifty different realizations of initial conditions of the ring elements. Results. It is shown that a fixed inhomogeneous distribution of the control parameters with increasing noise intensity leads to an increase in the range of the coupling strength where chimera states are observed. With this, the boundary lying in the region of strong coupling changes more significantly as compared with the case of weak coupling strength. The opposite effect is provided when the control parameters are permanently affected by noise. In this case increasing the noise intensity leads to a decrease in the interval of existence of chimera states. Additionally, the nature of the random variable distribution (normal or uniform one) does not strongly influence the observed changes in the ring dynamics. The regions of existence of chimera states are constructed in the plane of «coupling strength – noise intensity» parameters. Conclusion. We have studied how the region of existence of chimeras changes when the coupling strength between the ring elements is varied and when different characteristics of the inhomogeneous distribution of the control parameters are used. It has been shown that in order to increase the region of observing chimera states, the control parameters of the elements must be distributed inhomogeneously over the entire ensemble. To reduce this region, a constant noise effect on the control parameters should be used.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"33 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-2021-29-6-943-952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The aim of the research is to study the influence of inhomogeneity in a control parameter of all partial elements in a ring of nonlocally coupled chaotic maps on the possibility of observing chimera states in the system and to compare the changes in regions of chimera realization using different methods of introducing the inhomogeneity. Methods. In this paper, snapshots of the system dynamics are constructed for various values of the parameters, as well as spatial distributions of cross-correlation coefficient values, which enable us to determine the regime observed in the system for these parameters. To improve the accuracy of the obtained results, the numerical studies are carried out for fifty different realizations of initial conditions of the ring elements. Results. It is shown that a fixed inhomogeneous distribution of the control parameters with increasing noise intensity leads to an increase in the range of the coupling strength where chimera states are observed. With this, the boundary lying in the region of strong coupling changes more significantly as compared with the case of weak coupling strength. The opposite effect is provided when the control parameters are permanently affected by noise. In this case increasing the noise intensity leads to a decrease in the interval of existence of chimera states. Additionally, the nature of the random variable distribution (normal or uniform one) does not strongly influence the observed changes in the ring dynamics. The regions of existence of chimera states are constructed in the plane of «coupling strength – noise intensity» parameters. Conclusion. We have studied how the region of existence of chimeras changes when the coupling strength between the ring elements is varied and when different characteristics of the inhomogeneous distribution of the control parameters are used. It has been shown that in order to increase the region of observing chimera states, the control parameters of the elements must be distributed inhomogeneously over the entire ensemble. To reduce this region, a constant noise effect on the control parameters should be used.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.