Simple misspecification adaptive inference for interval identified parameters

Jörg Stoye
{"title":"Simple misspecification adaptive inference for interval identified parameters","authors":"Jörg Stoye","doi":"10.47004/wp.cem.2020.5520","DOIUrl":null,"url":null,"abstract":"This paper revisits the simple, but empirically salient, problem of inference on a real-valued parameter that is partially identified through upper and lower bounds with asymptotically normal estimators. A simple confidence interval is proposed and is shown to have the following properties: \n- It is never empty or awkwardly short, including when the sample analog of the identified set is empty. \n- It is valid for a well-defined pseudotrue parameter whether or not the model is well-specified. \n- It involves no tuning parameters and minimal computation. \nIn general, computing the interval requires concentrating out one scalar nuisance parameter. For uncorrelated estimators of bounds --notably if bounds are estimated from distinct subsamples-- and conventional coverage levels, this step can be skipped. The proposed $95\\%$ confidence interval then simplifies to the union of a simple $90\\%$ (!) confidence interval for the partially identified parameter and an equally simple $95\\%$ confidence interval for a point-identified pseudotrue parameter. This case obtains in the motivating empirical application, in which improvement over existing inference methods is demonstrated. More generally, simulations suggest excellent length and size control properties.","PeriodicalId":8448,"journal":{"name":"arXiv: Econometrics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47004/wp.cem.2020.5520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper revisits the simple, but empirically salient, problem of inference on a real-valued parameter that is partially identified through upper and lower bounds with asymptotically normal estimators. A simple confidence interval is proposed and is shown to have the following properties: - It is never empty or awkwardly short, including when the sample analog of the identified set is empty. - It is valid for a well-defined pseudotrue parameter whether or not the model is well-specified. - It involves no tuning parameters and minimal computation. In general, computing the interval requires concentrating out one scalar nuisance parameter. For uncorrelated estimators of bounds --notably if bounds are estimated from distinct subsamples-- and conventional coverage levels, this step can be skipped. The proposed $95\%$ confidence interval then simplifies to the union of a simple $90\%$ (!) confidence interval for the partially identified parameter and an equally simple $95\%$ confidence interval for a point-identified pseudotrue parameter. This case obtains in the motivating empirical application, in which improvement over existing inference methods is demonstrated. More generally, simulations suggest excellent length and size control properties.
区间识别参数的简单错配自适应推理
本文重述了一个简单的,但经验上显著的问题,即通过渐近正态估计的上界和下界部分辨识的实值参数的推理问题。提出了一个简单的置信区间,并显示出以下属性:-它永远不会为空或尴尬的短,包括当识别集的样本模拟为空时。-无论模型是否指定良好,对于定义良好的伪真参数都有效。-它不涉及调优参数和最小的计算。一般来说,计算区间需要集中一个标量干扰参数。对于边界的不相关估计——特别是如果边界是从不同的子样本估计的——和传统的覆盖水平,这一步可以跳过。提出的$95\%$置信区间然后简化为部分识别参数的简单$90\%$(!)置信区间和点识别伪真参数的同样简单$95\%$置信区间的并集。这个案例是在激励的经验应用中得到的,其中证明了对现有推理方法的改进。更一般地说,模拟显示了出色的长度和大小控制特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信