Simultaneously vanishing higher derived limits without large cardinals

IF 0.9 1区 数学 Q1 LOGIC
J. Bergfalk, M. Hrusák, C. Lambie-Hanson
{"title":"Simultaneously vanishing higher derived limits without large cardinals","authors":"J. Bergfalk, M. Hrusák, C. Lambie-Hanson","doi":"10.1142/s0219061322500192","DOIUrl":null,"url":null,"abstract":"A question dating to Sibe Marde\\v{s}i\\'{c} and Andrei Prasolov's 1988 work Strong homology is not additive, and motivating a considerable amount of set theoretic work in the ensuing years, is that of whether it is consistent with the ZFC axioms for the higher derived limits $\\mathrm{lim}^n$ $(n>0)$ of a certain inverse system $\\mathbf{A}$ indexed by ${^\\omega}\\omega$ to simultaneously vanish. An equivalent formulation of this question is that of whether it is consistent for all $n$-coherent families of functions indexed by ${^\\omega}\\omega$ to be trivial. In this paper, we prove that, in any forcing extension given by adjoining $\\beth_\\omega$-many Cohen reals, $\\mathrm{lim}^n \\mathbf{A}$ vanishes for all $n>0$. Our proof involves a detailed combinatorial analysis of the forcing extension and repeated applications of higher dimensional $\\Delta$-system lemmas. This work removes all large cardinal hypotheses from the main result of arXiv:1907.11744 and substantially reduces the least value of the continuum known to be compatible with the simultaneous vanishing of $\\mathrm{lim}^n \\mathbf{A}$ for all $n>0$.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"16 1","pages":"2250019:1-2250019:40"},"PeriodicalIF":0.9000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061322500192","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 7

Abstract

A question dating to Sibe Marde\v{s}i\'{c} and Andrei Prasolov's 1988 work Strong homology is not additive, and motivating a considerable amount of set theoretic work in the ensuing years, is that of whether it is consistent with the ZFC axioms for the higher derived limits $\mathrm{lim}^n$ $(n>0)$ of a certain inverse system $\mathbf{A}$ indexed by ${^\omega}\omega$ to simultaneously vanish. An equivalent formulation of this question is that of whether it is consistent for all $n$-coherent families of functions indexed by ${^\omega}\omega$ to be trivial. In this paper, we prove that, in any forcing extension given by adjoining $\beth_\omega$-many Cohen reals, $\mathrm{lim}^n \mathbf{A}$ vanishes for all $n>0$. Our proof involves a detailed combinatorial analysis of the forcing extension and repeated applications of higher dimensional $\Delta$-system lemmas. This work removes all large cardinal hypotheses from the main result of arXiv:1907.11744 and substantially reduces the least value of the continuum known to be compatible with the simultaneous vanishing of $\mathrm{lim}^n \mathbf{A}$ for all $n>0$.
同时消失没有大基数的更高派生极限
Sibe Marde \v{s}和Andrei Prasolov在1988年的著作《强同调不是可加的》(Strong homology is not additive)中提出的一个问题是,对于以${^\omega}\omega$为索引的某逆系统$\mathbf{A}$的较高推导极限$\mathrm{lim}^n$$(n>0)$是否与ZFC公理相一致,这个问题在随后的几年里激发了大量的集合论工作。这个问题的一个等价的表述是,是否所有$n$ -相干族的函数都以${^\omega}\omega$为索引是平凡的。在本文中,我们证明了在任意由相邻的$\beth_\omega$ -多个Cohen实数给出的强迫扩展中,对于所有$n>0$, $\mathrm{lim}^n \mathbf{A}$都消失。我们的证明包括对高维$\Delta$ -系统引理的强迫扩展和重复应用的详细组合分析。这项工作从arXiv:1907.11744的主要结果中删除了所有大的基本假设,并大大降低了已知与所有$n>0$的$\mathrm{lim}^n \mathbf{A}$同时消失相容的连续统的最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信